Math Problem Statement

We wish to determine the convergence or divergence of the improper integral \( \int_{1}^{\infty} \frac{8 + 3 \cos x}{2 + 3x^2} \, dx \). Choose the correct argument from the provided options.

Solution

The given problem requires determining whether the improper integral

18+3cosx2+3x2dx\int_{1}^{\infty} \frac{8 + 3 \cos x}{2 + 3x^2} \, dx

is convergent or divergent by comparison with other functions. Let us analyze the provided options systematically:


Step-by-Step Analysis

Key Observations

  1. The numerator 8+3cosx8 + 3\cos x oscillates between 83=58 - 3 = 5 and 8+3=118 + 3 = 11 because cosx[1,1]\cos x \in [-1, 1].
  2. The denominator 2+3x22 + 3x^2 grows quadratically as xx \to \infty.
  3. The behavior of the integral is dominated by the term 13x2\frac{1}{3x^2} for large xx.

Testing Convergence

We compare 8+3cosx2+3x2\frac{8 + 3 \cos x}{2 + 3x^2} to simpler bounding functions:

  1. Upper Bound: Since 58+3cosx115 \leq 8 + 3\cos x \leq 11, it follows that: 52+3x28+3cosx2+3x2112+3x2.\frac{5}{2 + 3x^2} \leq \frac{8 + 3\cos x}{2 + 3x^2} \leq \frac{11}{2 + 3x^2}.

  2. Comparison with kx2\frac{k}{x^2}:

    • For xx \to \infty, the denominator 2+3x22 + 3x^2 behaves like 3x23x^2, leading to approximate bounds: 53x28+3cosx2+3x2113x2.\frac{5}{3x^2} \leq \frac{8 + 3\cos x}{2 + 3x^2} \leq \frac{11}{3x^2}.
  3. Convergence of Bounds:

    • The integral of kx2\frac{k}{x^2} for k>0k > 0 is: 1kx2dx=[kx]1=k.\int_{1}^{\infty} \frac{k}{x^2} \, dx = \left[ -\frac{k}{x} \right]_{1}^{\infty} = k.
    • Thus, 153x2dx=53<\int_{1}^{\infty} \frac{5}{3x^2} \, dx = \frac{5}{3} < \infty and 1113x2dx=113<\int_{1}^{\infty} \frac{11}{3x^2} \, dx = \frac{11}{3} < \infty.
  4. Conclusion: By the comparison test, the given integral converges because it is bounded above and below by convergent integrals.


Correct Answer

The correct option is (b): The integral is convergent since 8+3cosx2+3x283x2 for all x1 and 183x2dx=83<.\text{The integral is convergent since } \frac{8 + 3 \cos x}{2 + 3x^2} \leq \frac{8}{3x^2} \text{ for all } x \geq 1 \text{ and } \int_{1}^{\infty} \frac{8}{3x^2} \, dx = \frac{8}{3} < \infty.


Do you want me to expand on any part of this explanation?


Related Questions:

  1. Why does the denominator 2+3x22 + 3x^2 dominate the numerator as xx \to \infty?
  2. How does the comparison test work for improper integrals?
  3. Could we directly evaluate this integral instead of using a comparison?
  4. Why do oscillatory terms like 3cosx3\cos x not affect convergence?
  5. What happens if the denominator grows slower, e.g., 2+3x2 + 3x?

Tip: Always simplify the dominant term for large xx to assess convergence behavior in improper integrals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Improper integrals
Comparison test
Bounds of trigonometric functions

Formulas

Integral bounds for \( \int \frac{1}{x^2} \, dx \): \( \int_{1}^{\infty} \frac{k}{x^2} \, dx = k \)
Behavior of trigonometric functions: \( \cos x \in [-1, 1] \)

Theorems

Comparison test for improper integrals
Properties of oscillating functions

Suitable Grade Level

Undergraduate Calculus