Math Problem Statement

Diketahui fungsi biaya marginal: MC = Q^2 - 42Q + 200. Tentukan: a. Fungsi biaya total (C), jika biaya tetap 900 b. Besarnya biaya total jika Q = 12.

Solution

We are tasked to solve the following problem related to cost functions in economics:

Given:

The marginal cost function (MC) is:
MC=Q242Q+200MC = Q^2 - 42Q + 200

To determine:

a. The total cost function C(Q)C(Q) if the fixed cost is 900900.
b. The total cost CC when Q=12Q = 12.


Solution:

Part a: Finding the Total Cost Function C(Q)C(Q)

The marginal cost (MC) is the derivative of the total cost function C(Q)C(Q): MC=dCdQ=Q242Q+200MC = \frac{dC}{dQ} = Q^2 - 42Q + 200

To find C(Q)C(Q), integrate MCMC with respect to QQ: C(Q)=MCdQ=(Q242Q+200)dQC(Q) = \int MC \, dQ = \int \left( Q^2 - 42Q + 200 \right) dQ

Performing the integration: C(Q)=Q3342Q22+200Q+KC(Q) = \frac{Q^3}{3} - \frac{42Q^2}{2} + 200Q + K where KK is the constant of integration, representing the fixed cost.

Given that the fixed cost is 900900, substitute K=900K = 900 into the equation: C(Q)=Q3321Q2+200Q+900C(Q) = \frac{Q^3}{3} - 21Q^2 + 200Q + 900

Thus, the total cost function is: C(Q)=Q3321Q2+200Q+900C(Q) = \frac{Q^3}{3} - 21Q^2 + 200Q + 900


Part b: Finding Total Cost at Q=12Q = 12

Substitute Q=12Q = 12 into the total cost function C(Q)C(Q): C(12)=(12)3321(12)2+200(12)+900C(12) = \frac{(12)^3}{3} - 21(12)^2 + 200(12) + 900

Simplify step-by-step:

  • 123=172812^3 = 1728, so 1233=17283=576\frac{12^3}{3} = \frac{1728}{3} = 576
  • 122=14412^2 = 144, so 21(12)2=21144=302421(12)^2 = 21 \cdot 144 = 3024
  • 200(12)=2400200(12) = 2400

Now substitute these values: C(12)=5763024+2400+900C(12) = 576 - 3024 + 2400 + 900

Combine the terms: C(12)=(576+2400+900)3024C(12) = (576 + 2400 + 900) - 3024 C(12)=38763024=852C(12) = 3876 - 3024 = 852


Final Answers:

a. The total cost function is: C(Q)=Q3321Q2+200Q+900C(Q) = \frac{Q^3}{3} - 21Q^2 + 200Q + 900

b. The total cost when Q=12Q = 12 is: C(12)=852C(12) = 852


Would you like further clarification or additional steps on this solution?

Here are related questions you might explore:

  1. How do we interpret the fixed cost KK in economics?
  2. What is the role of marginal cost in determining total cost?
  3. How do we integrate a polynomial function step-by-step?
  4. Can we generalize this method for other cost functions?
  5. How is the total cost function used in economic decision-making?

Tip: Always remember that the constant of integration in cost functions represents fixed costs, which do not vary with production levels.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Polynomial Functions
Cost Functions

Formulas

MC = dC/dQ
Integration of polynomials

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12 / College Level