Math Problem Statement

Find the derivative of 𝑦=π‘₯^(9𝑒)^(8π‘₯). y'=

Solution

To find the derivative of the given function y=x(9e)8xy = x^{(9e)^{8x}}, let's break it down step by step.

We have y=x(9e)8xy = x^{(9e)^{8x}}, which is an exponential function. We'll use logarithmic differentiation to differentiate this function since both the base and the exponent involve xx.

Step 1: Take the natural logarithm of both sides

ln⁑y=ln⁑(x(9e)8x)\ln y = \ln\left(x^{(9e)^{8x}}\right) Using the logarithmic property ln⁑(ab)=bln⁑(a)\ln(a^b) = b \ln(a), we get: ln⁑y=(9e)8xln⁑(x)\ln y = (9e)^{8x} \ln(x)

Step 2: Differentiate both sides implicitly

We now differentiate both sides with respect to xx. Using the chain rule on the left-hand side: 1ydydx=ddx[(9e)8xln⁑(x)]\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \left[ (9e)^{8x} \ln(x) \right] Now we need to differentiate the right-hand side, which involves the product of two functions, (9e)8x(9e)^{8x} and ln⁑(x)\ln(x).

Step 3: Differentiate the product

We'll apply the product rule: ddx(uv)=uβ€²v+uvβ€²\frac{d}{dx}(uv) = u'v + uv', where u=(9e)8xu = (9e)^{8x} and v=ln⁑(x)v = \ln(x).

  1. u=(9e)8xu = (9e)^{8x}, so uβ€²=(9e)8xβ‹…8ln⁑(9e)u' = (9e)^{8x} \cdot 8 \ln(9e) (since ddx(abx)=abxβ‹…bln⁑(a)\frac{d}{dx} (a^{bx}) = a^{bx} \cdot b \ln(a)).
  2. v=ln⁑(x)v = \ln(x), so vβ€²=1xv' = \frac{1}{x}.

Applying the product rule: ddx[(9e)8xln⁑(x)]=(9e)8xβ‹…8ln⁑(9e)β‹…ln⁑(x)+(9e)8xβ‹…1x\frac{d}{dx} \left[ (9e)^{8x} \ln(x) \right] = (9e)^{8x} \cdot 8 \ln(9e) \cdot \ln(x) + (9e)^{8x} \cdot \frac{1}{x}

Step 4: Solve for dydx\frac{dy}{dx}

Now multiply both sides of the equation by yy to isolate dydx\frac{dy}{dx}: dydx=y[(9e)8xβ‹…8ln⁑(9e)β‹…ln⁑(x)+(9e)8xβ‹…1x]\frac{dy}{dx} = y \left[ (9e)^{8x} \cdot 8 \ln(9e) \cdot \ln(x) + (9e)^{8x} \cdot \frac{1}{x} \right] Since y=x(9e)8xy = x^{(9e)^{8x}}, substitute yy back into the equation: dydx=x(9e)8x[(9e)8xβ‹…8ln⁑(9e)β‹…ln⁑(x)+(9e)8xβ‹…1x]\frac{dy}{dx} = x^{(9e)^{8x}} \left[ (9e)^{8x} \cdot 8 \ln(9e) \cdot \ln(x) + (9e)^{8x} \cdot \frac{1}{x} \right]

This is the derivative of the given function.

Would you like a detailed explanation of any part of the process? Here are 5 related questions you might want to explore:

  1. How do you use logarithmic differentiation for functions with exponents and bases involving xx?
  2. What is the product rule for differentiation?
  3. How do you differentiate functions with constants raised to variable powers?
  4. How does the chain rule apply in logarithmic differentiation?
  5. Can you generalize the derivative of a function of the form y=xf(x)y = x^{f(x)}?

Tip: Logarithmic differentiation is especially useful when dealing with functions where both the base and the exponent depend on the variable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponential Functions
Logarithmic Differentiation
Chain Rule
Product Rule

Formulas

Derivative of a^bx = a^bx * b ln(a)
Product Rule: d(uv)/dx = u'v + uv'
Logarithmic Property: ln(a^b) = b ln(a)

Theorems

Chain Rule
Product Rule
Logarithmic Differentiation

Suitable Grade Level

Undergraduate - Calculus I/II