Math Problem Statement

Can you show \frac{cov(R,G)}{E(R)} = (corr(R,G))x(\sqrt{\frac{1-E(R)}{E(R)}})x(var(G))

Solution

To derive the expression:
cov(R,G)E(R)=(corr(R,G))1E(R)E(R)var(G),\frac{\text{cov}(R, G)}{E(R)} = (\text{corr}(R, G)) \cdot \sqrt{\frac{1 - E(R)}{E(R)}} \cdot \text{var}(G), let's break it down step-by-step:


Definitions and Formulas

  1. Covariance (cov(R,G)\text{cov}(R, G)): cov(R,G)=corr(R,G)σRσG,\text{cov}(R, G) = \text{corr}(R, G) \cdot \sigma_R \cdot \sigma_G, where:

    • corr(R,G)\text{corr}(R, G) is the correlation coefficient,
    • σR\sigma_R and σG\sigma_G are the standard deviations of RR and GG, respectively.
  2. Variance (var(G)\text{var}(G)): var(G)=σG2.\text{var}(G) = \sigma_G^2.

  3. Standard deviation of RR: σR=var(R).\sigma_R = \sqrt{\text{var}(R)}.

  4. By definition of expected value: E(R)=1var(R)var(R)=1E(R).E(R) = 1 - \text{var}(R) \quad \Rightarrow \quad \text{var}(R) = 1 - E(R). This assumes RR is constrained between 0 and 1 (common in probability).


Step 1: Start with cov(R,G)E(R)\frac{\text{cov}(R, G)}{E(R)}

Substitute the formula for covariance: cov(R,G)E(R)=corr(R,G)σRσGE(R).\frac{\text{cov}(R, G)}{E(R)} = \frac{\text{corr}(R, G) \cdot \sigma_R \cdot \sigma_G}{E(R)}.


Step 2: Express σR\sigma_R in terms of E(R)E(R)

From the variance formula: var(R)=1E(R).\text{var}(R) = 1 - E(R). So, σR=var(R)=1E(R).\sigma_R = \sqrt{\text{var}(R)} = \sqrt{1 - E(R)}.


Step 3: Substitute σR\sigma_R and σG2=var(G)\sigma_G^2 = \text{var}(G)

cov(R,G)E(R)=corr(R,G)1E(R)var(G)E(R).\frac{\text{cov}(R, G)}{E(R)} = \frac{\text{corr}(R, G) \cdot \sqrt{1 - E(R)} \cdot \sqrt{\text{var}(G)}}{E(R)}.

Rewriting var(G)\sqrt{\text{var}(G)} as σG\sigma_G, we get: cov(R,G)E(R)=corr(R,G)1E(R)E(R)var(G).\frac{\text{cov}(R, G)}{E(R)} = \text{corr}(R, G) \cdot \sqrt{\frac{1 - E(R)}{E(R)}} \cdot \text{var}(G).


Final Result

Thus, the expression is verified: cov(R,G)E(R)=(corr(R,G))1E(R)E(R)var(G).\frac{\text{cov}(R, G)}{E(R)} = (\text{corr}(R, G)) \cdot \sqrt{\frac{1 - E(R)}{E(R)}} \cdot \text{var}(G).


Would you like further clarification or examples? 😊


Related Questions

  1. What is the significance of covariance and correlation in probability?
  2. How does the relationship E(R)=1var(R)E(R) = 1 - \text{var}(R) arise?
  3. How can you interpret var(G)\text{var}(G) and corr(R,G)\text{corr}(R, G) in this context?
  4. What happens when E(R)=0.5E(R) = 0.5 in the formula?
  5. Can you explain how this formula applies to real-world problems, such as financial returns?

Tip

When dealing with expected values and variances, always check the range of your random variables to ensure consistency in assumptions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Covariance
Correlation
Variance
Expected Value
Probability Theory

Formulas

cov(R, G) = corr(R, G) * sigma_R * sigma_G
var(G) = sigma_G^2
E(R) = 1 - var(R)
sigma_R = sqrt(var(R))

Theorems

Relationship between covariance, correlation, and variance
Properties of expected value and variance

Suitable Grade Level

Grades 11-12