Math Problem Statement

Evaluate the definite integral \( \int_1^{e^4} \frac{\ln x}{x^7} \, dx \).

Solution

The integral in the image is:

1e4lnxx7dx\int_1^{e^4} \frac{\ln x}{x^7} \, dx

To solve this, let's proceed as follows:

Step 1: Substitution

Let: u=lnxso thatdu=1xdxu = \ln x \quad \text{so that} \quad du = \frac{1}{x} \, dx

This substitution also changes the limits:

  • When x=1x = 1, u=ln1=0u = \ln 1 = 0.
  • When x=e4x = e^4, u=ln(e4)=4u = \ln(e^4) = 4.

Rewriting the integral in terms of uu: 1e4lnxx7dx=04ue6udu\int_1^{e^4} \frac{\ln x}{x^7} \, dx = \int_0^4 \frac{u}{e^{6u}} \, du

Step 2: Simplify the integrand

Since e6u=(eu)6e^{6u} = (e^u)^6, the integrand becomes: 04ue6udu=04ue6udu\int_0^4 \frac{u}{e^{6u}} \, du = \int_0^4 u e^{-6u} \, du

Step 3: Integration by parts

Using integration by parts, let:

  • v=uanddw=e6uduv = u \quad \text{and} \quad dw = e^{-6u} \, du
  • Then dv=duandw=e6udu=16e6udv = du \quad \text{and} \quad w = \int e^{-6u} \, du = -\frac{1}{6} e^{-6u}.

The formula for integration by parts is: vdw=vwwdv\int v \, dw = vw - \int w \, dv

Applying this: ue6udu=[u(16e6u)]04(16e6u)du\int u e^{-6u} \, du = \left[u \left(-\frac{1}{6} e^{-6u}\right)\right]_0^4 - \int \left(-\frac{1}{6} e^{-6u}\right) \, du

Step 4: Evaluate each term

  1. First term: [u(16e6u)]04=(164e24)(160e0)=46e24+0=23e24.\left[u \left(-\frac{1}{6} e^{-6u}\right)\right]_0^4 = \left(-\frac{1}{6} \cdot 4 e^{-24}\right) - \left(-\frac{1}{6} \cdot 0 e^0\right) = -\frac{4}{6} e^{-24} + 0 = -\frac{2}{3} e^{-24}.

  2. Second term: (16e6u)du=16e6udu=16(16e6u)=136e6u.\int \left(-\frac{1}{6} e^{-6u}\right) \, du = -\frac{1}{6} \int e^{-6u} \, du = -\frac{1}{6} \left(-\frac{1}{6} e^{-6u}\right) = \frac{1}{36} e^{-6u}. Evaluating from 0 to 4: [136e6u]04=136e24136e0=136e24136.\left[\frac{1}{36} e^{-6u}\right]_0^4 = \frac{1}{36} e^{-24} - \frac{1}{36} e^0 = \frac{1}{36} e^{-24} - \frac{1}{36}.

Step 5: Combine results

Adding the two parts together: 1e4lnxx7dx=23e24+136e24136.\int_1^{e^4} \frac{\ln x}{x^7} \, dx = -\frac{2}{3} e^{-24} + \frac{1}{36} e^{-24} - \frac{1}{36}.

Simplify the coefficients of e24e^{-24}: 23+136=2436+136=2336.-\frac{2}{3} + \frac{1}{36} = -\frac{24}{36} + \frac{1}{36} = -\frac{23}{36}.

So the final result is: 1e4lnxx7dx=2336e24136.\int_1^{e^4} \frac{\ln x}{x^7} \, dx = -\frac{23}{36} e^{-24} - \frac{1}{36}.

Let me know if you'd like further clarification or a step-by-step walkthrough!


Related Questions:

  1. How is the substitution u=lnxu = \ln x derived in integrals involving logarithmic terms?
  2. What are the key conditions for applying integration by parts effectively?
  3. How does the exponential decay of e6ue^{-6u} affect the integral's convergence?
  4. Can this result be approximated numerically for practical purposes?
  5. Are there alternative techniques to solve this integral?

Tip: Always verify limits of substitution when dealing with definite integrals to ensure accuracy.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integration
Logarithmic Substitution
Integration by Parts
Exponential Decay

Formulas

Integration by parts: \( \int v \, dw = vw - \int w \, dv \)
Exponential substitution: \( e^x \text{ and } \ln x \)

Theorems

Integration by parts theorem
Substitution method for definite integrals

Suitable Grade Level

Undergraduate Mathematics or Advanced High School Calculus