Math Problem Statement

Evaluate the definite integral \( \int_0^1 \tan^{-1}(x) dx \).

Solution

The given integral is:

01tan1(x)dx\int_0^1 \tan^{-1}(x) \, dx

To solve this, let's proceed step by step:


Step 1: Use Integration by Parts

The formula for integration by parts is: udv=uvvdu\int u \, dv = uv - \int v \, du Here, we'll choose:

  • u=tan1(x)u = \tan^{-1}(x), so that du=11+x2dxdu = \frac{1}{1+x^2} \, dx
  • dv=dxdv = dx, so that v=xv = x

Now apply the formula: tan1(x)dx=xtan1(x)x11+x2dx\int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \int x \cdot \frac{1}{1+x^2} \, dx


Step 2: Simplify the Remaining Integral

The remaining integral is: x1+x2dx\int \frac{x}{1+x^2} \, dx Let w=1+x2w = 1 + x^2, so dw=2xdxdw = 2x \, dx. This substitution gives: x1+x2dx=121wdw=12lnw+C\int \frac{x}{1+x^2} \, dx = \frac{1}{2} \int \frac{1}{w} \, dw = \frac{1}{2} \ln|w| + C Substitute w=1+x2w = 1 + x^2 back: x1+x2dx=12ln(1+x2)+C\int \frac{x}{1+x^2} \, dx = \frac{1}{2} \ln(1+x^2) + C


Step 3: Combine the Results

Now substitute this back into the integration by parts result: tan1(x)dx=xtan1(x)12ln(1+x2)+C\int \tan^{-1}(x) \, dx = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) + C


Step 4: Apply the Definite Integral

Now evaluate the definite integral from 0 to 1: 01tan1(x)dx=[xtan1(x)12ln(1+x2)]01\int_0^1 \tan^{-1}(x) \, dx = \left[ x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) \right]_0^1

At x=1x = 1: 1tan1(1)12ln(1+12)=π412ln(2)1 \cdot \tan^{-1}(1) - \frac{1}{2} \ln(1+1^2) = \frac{\pi}{4} - \frac{1}{2} \ln(2)

At x=0x = 0: 0tan1(0)12ln(1+02)=012ln(1)=00 \cdot \tan^{-1}(0) - \frac{1}{2} \ln(1+0^2) = 0 - \frac{1}{2} \ln(1) = 0

Subtract the two: 01tan1(x)dx=π412ln(2)\int_0^1 \tan^{-1}(x) \, dx = \frac{\pi}{4} - \frac{1}{2} \ln(2)


Final Answer:

01tan1(x)dx=π412ln(2)\boxed{\int_0^1 \tan^{-1}(x) \, dx = \frac{\pi}{4} - \frac{1}{2} \ln(2)}


Do you need further clarification or additional examples?

Related Questions:

  1. What are the properties of the arctangent function?
  2. How is integration by parts derived and when is it used?
  3. Can substitution methods always simplify integrals?
  4. What is the geometric interpretation of the given integral?
  5. How do logarithmic functions arise in integration problems?

Tip:

Always check the limits carefully in definite integrals when substitution is involved, as skipping this can lead to errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration
Inverse Trigonometric Functions
Integration by Parts

Formulas

Integration by parts: \( \int u \, dv = uv - \int v \, du \)
Substitution method: \( w = 1 + x^2 \), \( dw = 2x \, dx \)

Theorems

Properties of inverse trigonometric functions
Logarithmic integration

Suitable Grade Level

Grades 11-12 or first-year university calculus