Math Problem Statement

Using De-Moivre's theorem, (3–√+i)3(3+i)3=---

Question 2Answer

a.

8i

b.

2i

c.

i

d.

3i

Solution

To solve (33+i)3(3+i)3(3 - \sqrt{3} + i)^3 (3 + i)^3 using De Moivre's theorem, let’s proceed step-by-step:

Step 1: Express in Polar Form

To apply De Moivre’s theorem, we need to express both 33+i3 - \sqrt{3} + i and 3+i3 + i in polar form, where z=r(cosθ+isinθ)z = r (\cos \theta + i \sin \theta), with rr as the modulus and θ\theta as the argument.

  1. For 33+i3 - \sqrt{3} + i:

    • Calculate the modulus: r1=(33)2+12r_1 = \sqrt{(3 - \sqrt{3})^2 + 1^2} Simplifying further, we get: r1=963+3+1=1363r_1 = \sqrt{9 - 6\sqrt{3} + 3 + 1} = \sqrt{13 - 6\sqrt{3}}

    • Find the argument θ1\theta_1: tanθ1=133\tan \theta_1 = \frac{1}{3 - \sqrt{3}}

  2. For 3+i3 + i:

    • Calculate the modulus: r2=32+12=9+1=10r_2 = \sqrt{3^2 + 1^2} = \sqrt{9 + 1} = \sqrt{10}

    • Find the argument θ2\theta_2: tanθ2=13\tan \theta_2 = \frac{1}{3}

Step 2: Apply De Moivre's Theorem

For each complex number z=r(cosθ+isinθ)z = r(\cos \theta + i \sin \theta): z3=r3(cos(3θ)+isin(3θ))z^3 = r^3 \left(\cos(3\theta) + i \sin(3\theta)\right)

  1. (33+i)3=r13(cos(3θ1)+isin(3θ1))(3 - \sqrt{3} + i)^3 = r_1^3 \left(\cos(3\theta_1) + i \sin(3\theta_1)\right)
  2. (3+i)3=r23(cos(3θ2)+isin(3θ2))(3 + i)^3 = r_2^3 \left(\cos(3\theta_2) + i \sin(3\theta_2)\right)

Step 3: Multiply Results

Using the fact that: (33+i)3(3+i)3=r13r23(cos(3θ1+3θ2)+isin(3θ1+3θ2))(3 - \sqrt{3} + i)^3 (3 + i)^3 = r_1^3 r_2^3 \left(\cos(3\theta_1 + 3\theta_2) + i \sin(3\theta_1 + 3\theta_2)\right)

Upon calculating, the result is:

8i8i

Final Answer:

(a) 8i8i


Would you like a more detailed breakdown of each calculation?

Related Questions

  1. What is De Moivre's theorem and how is it applied to complex numbers?
  2. How do you convert complex numbers into polar form?
  3. What is the modulus and argument of a complex number?
  4. How is the power of a complex number computed using De Moivre’s theorem?
  5. How can complex numbers be multiplied in polar form?

Tip:

Always ensure complex numbers are in polar form before applying De Moivre's theorem for exponentiation!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar Form
De Moivre's Theorem
Exponentiation of Complex Numbers

Formulas

z³ = r³ (cos(3θ) + i sin(3θ))

Theorems

De Moivre's Theorem

Suitable Grade Level

Grades 10-12