Math Problem Statement

Cramer matrix show all calculation steps

Solution

To solve the system of linear equations using Cramer's rule, we'll go through each step carefully. Here are the equations extracted from the image:

6x + y - 3z &= 5 \quad \text{(Equation 1)} \\ x + 3y - 2z &= 5 \quad \text{(Equation 2)} \\ 2x + y + 4z &= 8 \quad \text{(Equation 3)} \end{aligned}$$ ### Step 1: Write the system in matrix form The system of equations can be written as: $$\mathbf{A} \cdot \mathbf{x} = \mathbf{B}$$ Where: $$\mathbf{A} = \begin{pmatrix} 6 & 1 & -3 \\ 1 & 3 & -2 \\ 2 & 1 & 4 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 5 \\ 5 \\ 8 \end{pmatrix}$$ ### Step 2: Calculate the determinant of matrix $$\mathbf{A}$$ $$\text{det}(\mathbf{A}) = \begin{vmatrix} 6 & 1 & -3 \\ 1 & 3 & -2 \\ 2 & 1 & 4 \end{vmatrix}$$ This determinant can be expanded as: $$\text{det}(\mathbf{A}) = 6 \begin{vmatrix} 3 & -2 \\ 1 & 4 \end{vmatrix} - 1 \begin{vmatrix} 1 & -2 \\ 2 & 4 \end{vmatrix} + (-3) \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix}$$ Calculating each 2x2 determinant: $$\begin{vmatrix} 3 & -2 \\ 1 & 4 \end{vmatrix} = (3)(4) - (-2)(1) = 12 + 2 = 14$$ $$\begin{vmatrix} 1 & -2 \\ 2 & 4 \end{vmatrix} = (1)(4) - (-2)(2) = 4 + 4 = 8$$ $$\begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} = (1)(1) - (3)(2) = 1 - 6 = -5$$ Now, substitute back: $$\text{det}(\mathbf{A}) = 6(14) - 1(8) - 3(-5) = 84 - 8 + 15 = 91$$ ### Step 3: Calculate determinants of matrices $$\mathbf{A}_x$$, $$\mathbf{A}_y$$, and $$\mathbf{A}_z$$ #### Determinant of $$\mathbf{A}_x$$ Replace the first column of $$\mathbf{A}$$ with $$\mathbf{B}$$: $$\mathbf{A}_x = \begin{pmatrix} 5 & 1 & -3 \\ 5 & 3 & -2 \\ 8 & 1 & 4 \end{pmatrix}$$ $$\text{det}(\mathbf{A}_x) = 5 \begin{vmatrix} 3 & -2 \\ 1 & 4 \end{vmatrix} - 1 \begin{vmatrix} 5 & -2 \\ 8 & 4 \end{vmatrix} + (-3) \begin{vmatrix} 5 & 3 \\ 8 & 1 \end{vmatrix}$$ Calculate the 2x2 determinants: $$\begin{vmatrix} 3 & -2 \\ 1 & 4 \end{vmatrix} = 14 \quad \text{(as calculated earlier)}$$ $$\begin{vmatrix} 5 & -2 \\ 8 & 4 \end{vmatrix} = (5)(4) - (-2)(8) = 20 + 16 = 36$$ $$\begin{vmatrix} 5 & 3 \\ 8 & 1 \end{vmatrix} = (5)(1) - (3)(8) = 5 - 24 = -19$$ Substitute back: \[ \text{det}(\mathbf{A}_x) = 5(14) - 1(36) - 3(-19) = 70 - 36 +

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Cramer's Rule
Determinants
Matrix Operations

Formulas

Cramer's Rule for solving linear systems

Theorems

-

Suitable Grade Level

Advanced High School or College