Math Problem Statement

3.3 Points 𝐴(1; 2), 𝐡(5; 1) and 𝐢(3; βˆ’ 2) are given and shown in the diagram below. Figure 3: Points 𝐴, 𝐡 and 𝐢 on the Cartesian plane. 3.3.1 Determine the coordinates of the point 𝐷 to create parallelogram 𝐴𝐡𝐢𝐷. (3) 3.3.2 Prove that 𝐴𝐡𝐢𝐷 is not a rhombus. (3)

Solution

To solve this problem, let's start with the given points A(1,2)A(1, 2), B(5,1)B(5, 1), and C(3,βˆ’2)C(3, -2) on the Cartesian plane.

3.3.1: Determine the coordinates of point DD to create parallelogram ABCDABCD

In a parallelogram, the diagonals bisect each other. Thus, the midpoint of diagonal ACAC should equal the midpoint of diagonal BDBD.

  1. Calculate the midpoint of ACAC: Midpoint of AC=(xA+xC2,yA+yC2)=(1+32,2βˆ’22)=(2,0)\text{Midpoint of } AC = \left( \frac{x_A + x_C}{2}, \frac{y_A + y_C}{2} \right) = \left( \frac{1 + 3}{2}, \frac{2 - 2}{2} \right) = \left( 2, 0 \right)

  2. Let the coordinates of DD be (xD,yD)(x_D, y_D). We now calculate the midpoint of BDBD: Midpoint of BD=(xB+xD2,yB+yD2)=(5+xD2,1+yD2)\text{Midpoint of } BD = \left( \frac{x_B + x_D}{2}, \frac{y_B + y_D}{2} \right) = \left( \frac{5 + x_D}{2}, \frac{1 + y_D}{2} \right)

  3. Set the midpoints equal: (5+xD2,1+yD2)=(2,0)\left( \frac{5 + x_D}{2}, \frac{1 + y_D}{2} \right) = (2, 0)

    This gives us two equations: 5+xD2=2(1)\frac{5 + x_D}{2} = 2 \quad \text{(1)} 1+yD2=0(2)\frac{1 + y_D}{2} = 0 \quad \text{(2)}

  4. Solve for xDx_D and yDy_D: From equation (1): 5+xD=4β€…β€ŠβŸΉβ€…β€ŠxD=4βˆ’5=βˆ’15 + x_D = 4 \implies x_D = 4 - 5 = -1

    From equation (2): 1+yD=0β€…β€ŠβŸΉβ€…β€ŠyD=βˆ’11 + y_D = 0 \implies y_D = -1

Thus, the coordinates of point DD are D(βˆ’1,βˆ’1)D(-1, -1).

3.3.2: Prove that ABCDABCD is not a rhombus

To prove that ABCDABCD is not a rhombus, we need to show that not all sides are of equal length.

  1. Calculate the lengths of the sides:

    • Length of ABAB: AB=(xBβˆ’xA)2+(yBβˆ’yA)2=(5βˆ’1)2+(1βˆ’2)2=16+1=17AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(5 - 1)^2 + (1 - 2)^2} = \sqrt{16 + 1} = \sqrt{17}

    • Length of BCBC: BC=(xCβˆ’xB)2+(yCβˆ’yB)2=(3βˆ’5)2+(βˆ’2βˆ’1)2=4+9=13BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} = \sqrt{(3 - 5)^2 + (-2 - 1)^2} = \sqrt{4 + 9} = \sqrt{13}

    • Length of CDCD: CD=(xDβˆ’xC)2+(yDβˆ’yC)2=(βˆ’1βˆ’3)2+(βˆ’1+2)2=16+1=17CD = \sqrt{(x_D - x_C)^2 + (y_D - y_C)^2} = \sqrt{(-1 - 3)^2 + (-1 + 2)^2} = \sqrt{16 + 1} = \sqrt{17}

    • Length of DADA: DA=(xAβˆ’xD)2+(yAβˆ’yD)2=(1+1)2+(2+1)2=4+9=13DA = \sqrt{(x_A - x_D)^2 + (y_A - y_D)^2} = \sqrt{(1 + 1)^2 + (2 + 1)^2} = \sqrt{4 + 9} = \sqrt{13}

  2. Compare the lengths:

    • AB=17AB = \sqrt{17}
    • BC=13BC = \sqrt{13}
    • CD=17CD = \sqrt{17}
    • DA=13DA = \sqrt{13}

Since AB≠BCAB \neq BC, the lengths are not all equal, proving that ABCDABCD is not a rhombus.

Summary:

  • Coordinates of point DD: D(βˆ’1,βˆ’1)D(-1, -1)
  • Proof that ABCDABCD is not a rhombus: ABAB and CDCD are equal, but BCBC and DADA are equal and not equal to ABAB.

If you need further details or have questions, let me know! Here are some related questions you might consider:

  1. What are the coordinates of the midpoint of diagonal BDBD?
  2. How do you calculate the area of parallelogram ABCDABCD?
  3. What conditions must be met for a quadrilateral to be a rhombus?
  4. Can you derive the slope of each side of the parallelogram?
  5. What other types of quadrilaterals can be formed with points AA, BB, CC, and DD?

Tip: Always check the lengths of the sides to determine the properties of quadrilaterals.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Coordinate Geometry
Properties of Parallelograms
Distance Formula

Formulas

Midpoint Formula: M = ((x1 + x2)/2, (y1 + y2)/2)
Distance Formula: d = √((x2 - x1)² + (y2 - y1)²)

Theorems

Diagonals of a parallelogram bisect each other
A quadrilateral is a rhombus if all sides are equal

Suitable Grade Level

Grades 9-10