Math Problem Statement

Recall u⃗ 1=[1,3]u→1=[1,3], u⃗ 2=[0,−3]u→2=[0,−3], v⃗ 1=[−1,0]v→1=[−1,0] and v⃗ 2=[−3,2]v→2=[−3,2], so that B={u⃗ 1,u⃗ 2}B={u→1,u→2} and C={v⃗ 1,v⃗ 2}C={v→1,v→2} are bases of R2R2. Having found the transition matrix PCBPCB in the previous question, now find the coordinates of the following vectors with respect to CC (enter the coordinates as a vector in the form [1,3][1,3]).

Solution

To find the coordinates of a vector with respect to the basis CC using the transition matrix PCBP_{C \leftarrow B}, you would apply the inverse of the transition matrix PCBP_{C \leftarrow B} to the coordinates of the vector in the basis BB.

Given:

  • u1=[13]\mathbf{u}_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}
  • u2=[03]\mathbf{u}_2 = \begin{bmatrix} 0 \\ -3 \end{bmatrix}
  • v1=[10]\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}
  • v2=[32]\mathbf{v}_2 = \begin{bmatrix} -3 \\ 2 \end{bmatrix}

And the transition matrix PCB=[112923232]P_{C \leftarrow B} = \begin{bmatrix} -\frac{11}{2} & \frac{9}{2} \\ \frac{3}{2} & -\frac{3}{2} \end{bmatrix}.

To find the coordinates of a vector x\mathbf{x} in the basis CC, denoted [x]C[\mathbf{x}]_C, we can apply the following formula:

[ [\mathbf{x}]C = P{C \leftarrow B} \cdot [\mathbf{x}]_B ]

Now, you need to provide the vector x\mathbf{x} in the basis BB (denoted as [x]B[\mathbf{x}]_B) for which you want to find the coordinates in the basis CC. Once provided, we can use the above formula to find the coordinates of the vector in the basis CC.

Please provide the vector in the basis BB you wish to convert to the basis CC.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Basis
Coordinate Transformation

Formulas

Change of Basis Formula

Theorems

-

Suitable Grade Level

Advanced Undergraduate