Math Problem Statement
Jadi, persamaan setelah rotasi adalah:
\text{(1)} \quad x' = \frac{\sqrt{2}}{2}(x - y)
\text{(2)} \quad y' = \frac{\sqrt{2}}{2}(x + y) ]
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Coordinate Geometry
2D Rotation
Trigonometry
Formulas
Rotation matrix formula: \begin{pmatrix}x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix}x \\ y\end{pmatrix}
For 45° rotation: \cos 45° = \sin 45° = \frac{\sqrt{2}}{2}
Theorems
2D Rotation Theorem
Trigonometric Functions for Special Angles
Suitable Grade Level
Grades 10-12
Related Recommendation
Understanding the Rules of Rotation in Coordinate Geometry
Determine Coordinates After 90° Rotation on a Coordinate Plane
Apply 90° Clockwise Rotation Formula to Point P at (0,0)
Coordinate Geometry: Find the Original Coordinates of Square ABCD after Rotation
Determine Coordinates After 90-Degree Counterclockwise Rotation