Math Problem Statement
Jaycee is writing a coordinate proof to show that the diagonals of a rectangle bisect each other. She starts by assigning coordinates to a rectangle. Then she uses these coordinates to write the coordinates of the midpoint of each diagonal. She finds that the midpoints of the diagonals have the same coordinates, so the diagonals must bisect each other.
What are the coordinates of the midpoint of the diagonals of the rectangle?
Enter expressions in the box for the coordinates of the midpoint.
(, )
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Geometry
Coordinate Geometry
Midpoint of a Line Segment
Properties of Rectangles
Formulas
Midpoint Formula: ( (x1 + x2) / 2 , (y1 + y2) / 2 )
Theorems
The diagonals of a rectangle bisect each other.
Suitable Grade Level
Grades 8-10
Related Recommendation
Proof: Diagonals of a Rectangle Bisect Each Other
Find the Intersection Point of Rectangle Diagonals using Midpoint Formula
Proving Parallelograms Using Midpoint Formula in Coordinate Geometry
Proof: Diagonals Bisect Each Other in a Parallelogram
Proof of Line Segment Joining Midpoints Bisecting Diagonals in a Trapezium