Math Problem Statement

  1. Rhombus CDEF with vertices C(-5, 5), D(-1, 7), E(-3, 3), and F(-7, 1): 270° counterclockwise

C’ (____, ) D’ (, ) E’ (, ) F’ (, ) 2. Rectangle WXYZ with vertices W(-3, -5), X(1, -1), Y(3, -3), and Z(-1, -7): 180° counterclockwise W’ (, ) X’ (, ) Y’ (, ) Z’ (, ____)

Solution

To solve these rotation problems, we use rotation formulas:

Rotation Formulas:

  1. 270° Counterclockwise Rotation:
    The formula for a 270° counterclockwise rotation around the origin is: (x,y)(y,x)(x, y) \to (y, -x)

  2. 180° Counterclockwise Rotation:
    The formula for a 180° counterclockwise rotation around the origin is: (x,y)(x,y)(x, y) \to (-x, -y)


1. Rhombus CDEF - 270° Counterclockwise

Vertices:

  • C(-5, 5):
    (5,5)(5,5)(-5, 5) \to (5, 5)
  • D(-1, 7):
    (1,7)(7,1)(-1, 7) \to (7, 1)
  • E(-3, 3):
    (3,3)(3,3)(-3, 3) \to (3, 3)
  • F(-7, 1):
    (7,1)(1,7)(-7, 1) \to (1, 7)

New vertices:

  • C(5,5)C'(5, 5)
  • D(7,1)D'(7, 1)
  • E(3,3)E'(3, 3)
  • F(1,7)F'(1, 7)

2. Rectangle WXYZ - 180° Counterclockwise

Vertices:

  • W(-3, -5):
    (3,5)(3,5)(-3, -5) \to (3, 5)
  • X(1, -1):
    (1,1)(1,1)(1, -1) \to (-1, 1)
  • Y(3, -3):
    (3,3)(3,3)(3, -3) \to (-3, 3)
  • Z(-1, -7):
    (1,7)(1,7)(-1, -7) \to (1, 7)

New vertices:

  • W(3,5)W'(3, 5)
  • X(1,1)X'(-1, 1)
  • Y(3,3)Y'(-3, 3)
  • Z(1,7)Z'(1, 7)

Final Answer:

1. Rhombus CDEF (270° Counterclockwise)

  • C(5,5)C'(5, 5)
  • D(7,1)D'(7, 1)
  • E(3,3)E'(3, 3)
  • F(1,7)F'(1, 7)

2. Rectangle WXYZ (180° Counterclockwise)

  • W(3,5)W'(3, 5)
  • X(1,1)X'(-1, 1)
  • Y(3,3)Y'(-3, 3)
  • Z(1,7)Z'(1, 7)

Do you want detailed steps for the transformations or have any other questions?

Expanding questions:

  1. What happens if we rotate by 90° counterclockwise instead?
  2. How do the coordinates change for a 360° rotation?
  3. What is the general rule for rotation about a different center?
  4. How can you verify rotations on a graph?
  5. How does rotation affect the shape's area and orientation?

Tip: Always sketch the points on graph paper for visual verification of your transformations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Coordinate Geometry
Rotations
Transformations

Formulas

270° counterclockwise rotation: (x, y) → (y, -x)
180° counterclockwise rotation: (x, y) → (-x, -y)

Theorems

Rotation about the origin

Suitable Grade Level

Grades 8-10