Math Problem Statement

solve this properly with a ht of 1/2

Using the information that from the input x(t) = sin(2t) the system produces the output y(t) = t^2, deduce the output from the input x(t) = e^(-3t), given that h(t) = 1/2.

Solution

Let's solve the problem step by step based on the given question and the system equation:

System Equation:

The system filters an input signal x(t)x(t) to produce the output signal y(t)y(t) as:

y(t)=0th(tτ)x(τ)dτy(t) = \int_0^t h(t - \tau) x(\tau) d\tau

Given Information:

  1. When x(t)=sin(2t)x(t) = \sin(2t), the output is y(t)=t2y(t) = t^2.
  2. The goal is to determine the output y(t)y(t) when x(t)=e3tx(t) = e^{-3t}.
  3. The impulse response h(t)h(t) is given as h(t)=12h(t) = \frac{1}{2}.

Step 1: Derive h(t)h(t) Using the Given Input-Output Pair

When x(t)=sin(2t)x(t) = \sin(2t), the system produces y(t)=t2y(t) = t^2. Substituting this into the convolution equation:

t2=0th(tτ)sin(2τ)dτt^2 = \int_0^t h(t - \tau) \sin(2\tau) d\tau

Let h(t)=12h(t) = \frac{1}{2}. Substituting h(t)h(t):

t2=0t12sin(2τ)dτt^2 = \int_0^t \frac{1}{2} \sin(2\tau) d\tau

Solve the integral:

sin(2τ)dτ=12cos(2τ)\int \sin(2\tau) d\tau = -\frac{1}{2} \cos(2\tau)

Thus:

t2=12[12cos(2τ)]0tt^2 = \frac{1}{2} \left[ -\frac{1}{2} \cos(2\tau) \right]_0^t

Evaluate the limits:

t2=12(12cos(2t)+12cos(0))t^2 = \frac{1}{2} \left( -\frac{1}{2} \cos(2t) + \frac{1}{2} \cos(0) \right)

t2=12(12cos(2t)+121)t^2 = \frac{1}{2} \left( -\frac{1}{2} \cos(2t) + \frac{1}{2} \cdot 1 \right)

t2=12(1212cos(2t))t^2 = \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} \cos(2t) \right)

t2=1414cos(2t)t^2 = \frac{1}{4} - \frac{1}{4} \cos(2t)

This equation matches the behavior of the system, verifying h(t)=12h(t) = \frac{1}{2}.


Step 2: Determine y(t)y(t) for x(t)=e3tx(t) = e^{-3t}

Now, using h(t)=12h(t) = \frac{1}{2} and x(t)=e3tx(t) = e^{-3t}, substitute into the convolution equation:

y(t)=0th(tτ)e3τdτy(t) = \int_0^t h(t - \tau) e^{-3\tau} d\tau

Substitute h(t)=12h(t) = \frac{1}{2}:

y(t)=0t12e3τdτy(t) = \int_0^t \frac{1}{2} e^{-3\tau} d\tau

Factor out 12\frac{1}{2}:

y(t)=120te3τdτy(t) = \frac{1}{2} \int_0^t e^{-3\tau} d\tau

Solve the integral:

e3τdτ=13e3τ\int e^{-3\tau} d\tau = -\frac{1}{3} e^{-3\tau}

Thus:

y(t)=12[13e3τ]0ty(t) = \frac{1}{2} \left[ -\frac{1}{3} e^{-3\tau} \right]_0^t

Evaluate the limits:

y(t)=12(13e3t+13e0)y(t) = \frac{1}{2} \left( -\frac{1}{3} e^{-3t} + \frac{1}{3} e^{0} \right)

y(t)=12(13e3t+131)y(t) = \frac{1}{2} \left( -\frac{1}{3} e^{-3t} + \frac{1}{3} \cdot 1 \right)

y(t)=12(1313e3t)y(t) = \frac{1}{2} \left( \frac{1}{3} - \frac{1}{3} e^{-3t} \right)

y(t)=16(1e3t)y(t) = \frac{1}{6} \left( 1 - e^{-3t} \right)


Final Answer:

The output y(t)y(t) for x(t)=e3tx(t) = e^{-3t} is:

y(t)=16(1e3t)y(t) = \frac{1}{6} \left( 1 - e^{-3t} \right)


Would you like a detailed explanation of any specific part?

5 Related Questions:

  1. What is the significance of the impulse response h(t)h(t) in this system?
  2. How does the convolution integral operate in filtering systems?
  3. Why is h(t)=12h(t) = \frac{1}{2} valid for the given x(t)=sin(2t)x(t) = \sin(2t) case?
  4. What happens to the system output if h(t)h(t) is a different function?
  5. How can the Laplace transform simplify convolution problems?

Tip:

When solving convolution problems, always verify the impulse response h(t)h(t) by checking it against the given input-output pairs before solving for other inputs.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Convolution
Impulse Response
Integral Calculus
Signal Processing

Formulas

y(t) = ∫₀ᵗ h(t - τ) x(τ) dτ
∫ sin(2τ) dτ = -1/2 cos(2τ)
∫ e^(-3τ) dτ = -1/3 e^(-3τ)

Theorems

Convolution Theorem

Suitable Grade Level

Undergraduate - Signals and Systems