Math Problem Statement

Change from rectangular to spherical coordinates. (Let πœŒ β‰₯ 0, 0 β‰€ πœƒ β‰€ 2πœ‹, and 0 β‰€ πœ‘ β‰€ πœ‹.)

(a)

(0, 6, βˆ’6)

(𝜌, πœƒ, πœ‘) =

(b)

(βˆ’6, 6, 6

6

)

(𝜌, πœƒ, πœ‘) =

Solution

To convert from rectangular coordinates (x,y,z)(x, y, z) to spherical coordinates (ρ,ΞΈ,Ο•)(\rho, \theta, \phi), we use the following formulas:

  1. ρ=x2+y2+z2\rho = \sqrt{x^2 + y^2 + z^2}
  2. θ=arctan⁑(yx)\theta = \arctan\left(\frac{y}{x}\right) (adjusted for the quadrant of (x,y)(x, y))
  3. Ο•=arccos⁑(zρ)\phi = \arccos\left(\frac{z}{\rho}\right)

(a) Convert (x,y,z)=(0,6,βˆ’6)(x, y, z) = (0, 6, -6):

  1. Compute ρ\rho: ρ=x2+y2+z2=02+62+(βˆ’6)2=0+36+36=72=62.\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{0^2 + 6^2 + (-6)^2} = \sqrt{0 + 36 + 36} = \sqrt{72} = 6\sqrt{2}.

  2. Compute ΞΈ\theta: Since x=0x = 0 and y=6y = 6, ΞΈ=arctan⁑(yx)\theta = \arctan\left(\frac{y}{x}\right) is undefined. However, in this case, ΞΈ=Ο€2\theta = \frac{\pi}{2} (positive y-axis).

  3. Compute Ο•\phi: Ο•=arccos⁑(zρ)=arccos⁑(βˆ’662)=arccos⁑(βˆ’12).\phi = \arccos\left(\frac{z}{\rho}\right) = \arccos\left(\frac{-6}{6\sqrt{2}}\right) = \arccos\left(-\frac{1}{\sqrt{2}}\right). βˆ’12-\frac{1}{\sqrt{2}} corresponds to an angle of Ο•=3Ο€4\phi = \frac{3\pi}{4}.

Result:
(ρ,ΞΈ,Ο•)=(62,Ο€2,3Ο€4).(\rho, \theta, \phi) = \left(6\sqrt{2}, \frac{\pi}{2}, \frac{3\pi}{4}\right).


(b) Convert (x,y,z)=(βˆ’6,6,6)(x, y, z) = (-6, 6, 6):

  1. Compute ρ\rho: ρ=x2+y2+z2=(βˆ’6)2+62+62=36+36+36=108=63.\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{(-6)^2 + 6^2 + 6^2} = \sqrt{36 + 36 + 36} = \sqrt{108} = 6\sqrt{3}.

  2. Compute ΞΈ\theta: ΞΈ=arctan⁑(yx)=arctan⁑(6βˆ’6)=arctan⁑(βˆ’1).\theta = \arctan\left(\frac{y}{x}\right) = \arctan\left(\frac{6}{-6}\right) = \arctan(-1). Since the point (βˆ’6,6)(-6, 6) is in the second quadrant, ΞΈ=Ο€βˆ’Ο€4=3Ο€4\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}.

  3. Compute Ο•\phi: Ο•=arccos⁑(zρ)=arccos⁑(663)=arccos⁑(13).\phi = \arccos\left(\frac{z}{\rho}\right) = \arccos\left(\frac{6}{6\sqrt{3}}\right) = \arccos\left(\frac{1}{\sqrt{3}}\right). 13\frac{1}{\sqrt{3}} corresponds to an angle of Ο•=Ο€3\phi = \frac{\pi}{3}.

Result:
(ρ,ΞΈ,Ο•)=(63,3Ο€4,Ο€3).(\rho, \theta, \phi) = \left(6\sqrt{3}, \frac{3\pi}{4}, \frac{\pi}{3}\right).


Let me know if you want further explanations or verification!

Related Questions:

  1. How do you interpret spherical coordinates geometrically?
  2. What are the advantages of spherical coordinates in certain applications?
  3. How do you determine the correct quadrant for ΞΈ\theta?
  4. How are spherical coordinates used in physics, such as for electric fields?
  5. What are the differences between cylindrical and spherical coordinates?

Tip: Always double-check which quadrant your point lies in when calculating ΞΈ\theta to avoid errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Coordinate Systems
Spherical Coordinates
Rectangular Coordinates

Formulas

𝜌 = √(x² + y² + z²)
πœƒ = arctan(y / x) (adjusted for quadrant)
πœ‘ = arccos(z / 𝜌)

Theorems

Pythagorean Theorem

Suitable Grade Level

Undergraduate (Introductory Mathematics or Physics)