Math Problem Statement

Convert radians to degrees and determine the principal values (esas ölçü) for given radian measures.

Solution

The image contains problems asking for conversions from radians to degrees and determining the "principal value" of given angles in radians.

Here’s a step-by-step breakdown of what each part represents:

Converting from Radians to Degrees:

To convert radians to degrees, use the formula: Degrees=Radians×180π\text{Degrees} = \text{Radians} \times \frac{180}{\pi}

For each question (a-g) in the left section:

  1. a) π8radians\frac{\pi}{8} \, \text{radians} Degrees=π8×180π=1808=22.5\text{Degrees} = \frac{\pi}{8} \times \frac{180}{\pi} = \frac{180}{8} = 22.5^\circ

  2. b) 3π2radians\frac{3\pi}{2} \, \text{radians} Degrees=3π2×180π=270\text{Degrees} = \frac{3\pi}{2} \times \frac{180}{\pi} = 270^\circ

  3. c) 4π5radians\frac{4\pi}{5} \, \text{radians} Degrees=4π5×180π=144\text{Degrees} = \frac{4\pi}{5} \times \frac{180}{\pi} = 144^\circ

  4. d) π5radians\frac{\pi}{5} \, \text{radians} Degrees=π5×180π=36\text{Degrees} = \frac{\pi}{5} \times \frac{180}{\pi} = 36^\circ

  5. e) 7π2radians\frac{7\pi}{2} \, \text{radians} Degrees=7π2×180π=630\text{Degrees} = \frac{7\pi}{2} \times \frac{180}{\pi} = 630^\circ

  6. f) 12π5radians\frac{12\pi}{5} \, \text{radians} Degrees=12π5×180π=432\text{Degrees} = \frac{12\pi}{5} \times \frac{180}{\pi} = 432^\circ

  7. g) 12π5radians\frac{12\pi}{5} \, \text{radians} (Same as f, so it also equals 432°)


Principal Values (Esas Ölçü):

The "principal value" or "esas ölçü" refers to reducing an angle to the range 0θ<3600^\circ \leq \theta < 360^\circ.

For each question in the right section (A-F):

  1. A) 7π6radians\frac{7\pi}{6} \, \text{radians} Degrees=7π6×180π=210\text{Degrees} = \frac{7\pi}{6} \times \frac{180}{\pi} = 210^\circ Principal value: 210210^\circ (since it's already within the 0° to 360° range).

  2. B) 7π6radians\frac{7\pi}{6} \, \text{radians} (same as A) Principal value: 210210^\circ

  3. C) 38π5radians\frac{38\pi}{5} \, \text{radians} Degrees=38π5×180π=1368\text{Degrees} = \frac{38\pi}{5} \times \frac{180}{\pi} = 1368^\circ Now, subtract multiples of 360°: 13683×360=2881368^\circ - 3 \times 360^\circ = 288^\circ Principal value: 288288^\circ

  4. D) 38π5radians\frac{38\pi}{5} \, \text{radians} (same as C) Principal value: 288288^\circ

  5. E) 9π2radians\frac{9\pi}{2} \, \text{radians} Degrees=9π2×180π=810\text{Degrees} = \frac{9\pi}{2} \times \frac{180}{\pi} = 810^\circ Subtracting multiples of 360°: 8102×360=90810^\circ - 2 \times 360^\circ = 90^\circ Principal value: 9090^\circ

  6. F) 21π2radians\frac{21\pi}{2} \, \text{radians} Degrees=21π2×180π=1890\text{Degrees} = \frac{21\pi}{2} \times \frac{180}{\pi} = 1890^\circ Subtracting multiples of 360°: 18905×360=901890^\circ - 5 \times 360^\circ = 90^\circ Principal value: 9090^\circ


Summary of Principal Values:

  • A) 210°
  • B) 210°
  • C) 288°
  • D) 288°
  • E) 90°
  • F) 90°

Let me know if you would like further clarifications on any specific part of the problem.

Here are 5 related questions for more practice:

  1. Convert 5π4radians\frac{5\pi}{4} \, \text{radians} to degrees.
  2. What is the principal value of 5πradians?5\pi \, \text{radians}?
  3. How many degrees are there in 2π3radians?\frac{2\pi}{3} \, \text{radians}?
  4. What is the principal value of 15π4radians?\frac{15\pi}{4} \, \text{radians}?
  5. Convert 8π6radians\frac{8\pi}{6} \, \text{radians} to degrees and find its principal value.

Tip:

Always reduce radians by subtracting multiples of 2π2\pi (or 360360^\circ for degrees) to find the principal value of an angle.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Radians
Degrees
Principal Value of Angles

Formulas

Degrees = Radians * (180 / π)
Principal value: Reduce the angle to the range 0° ≤ θ < 360°

Theorems

Conversion of radians to degrees
Modulo operation to find principal values

Suitable Grade Level

Grades 9-12