Math Problem Statement

ubahlah matriks berikut ke dalam bentuk matriks eselon baris dan matriks eselon baris tereduksi dengan menggunakan operasi baris elementer (OBE)

Ubahlah matriks berikut ke dalam bentuk matriks eselon baris dan matriks eselon baris tereduksi dengan menggunakan operasi baris elementer (OBE).

Solution

The matrices provided need to be converted into row echelon form (REF) and reduced row echelon form (RREF) using elementary row operations (EROs). Let's start by determining the REF and RREF for each matrix. Here are the matrices from the image:

  1. [312891]\begin{bmatrix} 3 & 1 & 2 \\ 8 & -9 & 1 \end{bmatrix}
  2. [111121111]\begin{bmatrix} 1 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & 1 \end{bmatrix}
  3. [11032215]\begin{bmatrix} 1 & -1 & 0 & 3 \\ 2 & 2 & 1 & 5 \end{bmatrix}

I'll begin by converting each of these matrices into REF and RREF forms. Starting with the first matrix:

Matrix 1

  • Original: [312891]\begin{bmatrix} 3 & 1 & 2 \\ 8 & -9 & 1 \end{bmatrix}

Row Echelon Form (REF)

  • Divide the first row by 3 to make the leading entry a 1.
  • Subtract 83\frac{8}{3} times the first row from the second row to make the entry below the leading 1 a 0.

Reduced Row Echelon Form (RREF)

  • Continue from the REF form and make further adjustments to achieve the identity matrix where possible.

Let's calculate these forms now.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Matrix Theory
Elementary Row Operations
Row Echelon Form (REF)
Reduced Row Echelon Form (RREF)

Formulas

Row operations: Swap rows, Multiply row by a nonzero scalar, Add or subtract a multiple of one row to another row

Theorems

Row Echelon Form Theorem
Reduced Row Echelon Form Theorem

Suitable Grade Level

Grades 11-12 or College level