Math Problem Statement

resuelve esto

Exercici 7: Identificació i transformació de decimals a fracció generatriu. Llegeix atentament els següents nombres decimals i determina si són decimals exactes, periòdics o semiperiodics. Transforma'ls a la seva fracció generatriu corresponent. Nombres a treballar: 0.6, 1.454545…, 3.025, 2.5, 0.8333…, 4.181818…, 0.090909…, 5.0125.

Solution

Let’s break down and solve the exercise step by step based on the image you provided.

The task is to:

  1. Identify if each number is exact, repeating (periodic), or semi-repeating (semiperiodic).
  2. Convert each number to its equivalent fraction.

The list of numbers to work with is:

  1. 0.60.6
  2. 1.4545451.454545\ldots
  3. 3.0253.025
  4. 2.52.5
  5. 0.83330.8333\ldots
  6. 4.1818184.181818\ldots
  7. 0.0909090.090909\ldots
  8. 5.01255.0125

Solutions:

  1. 0.60.6:

    • Type: Exact decimal (terminates).
    • Fraction: 0.6=610=350.6 = \frac{6}{10} = \frac{3}{5}.
  2. 1.4545451.454545\ldots:

    • Type: Repeating decimal.
    • Fraction: 1.454545=1+0.4545451.454545\ldots = 1 + 0.454545\ldots. To convert the repeating part 0.4545450.454545\ldots, let: x=0.454545x = 0.454545\ldots Multiply by 100 to shift the decimal: 100x=45.454545100x = 45.454545\ldots Subtract the original equation: 100xx=45.4545450.454545100x - x = 45.454545\ldots - 0.454545\ldots This gives: 99x=45    x=4599=51199x = 45 \implies x = \frac{45}{99} = \frac{5}{11} Therefore: 1.454545=1+511=16111.454545\ldots = 1 + \frac{5}{11} = \frac{16}{11}
  3. 3.0253.025:

    • Type: Exact decimal (terminates).
    • Fraction: 3.025=30251000=605200=121403.025 = \frac{3025}{1000} = \frac{605}{200} = \frac{121}{40}.
  4. 2.52.5:

    • Type: Exact decimal (terminates).
    • Fraction: 2.5=2510=522.5 = \frac{25}{10} = \frac{5}{2}.
  5. 0.83330.8333\ldots:

    • Type: Repeating decimal.
    • Fraction: 0.8333=560.8333\ldots = \frac{5}{6} (this is a known repeating decimal).
  6. 4.1818184.181818\ldots:

    • Type: Repeating decimal.
    • Fraction: 4.181818=4+0.1818184.181818\ldots = 4 + 0.181818\ldots. Let: y=0.181818y = 0.181818\ldots Multiply by 100: 100y=18.181818100y = 18.181818\ldots Subtracting the original equation: 100yy=18.1818180.181818100y - y = 18.181818\ldots - 0.181818\ldots This gives: 99y=18    y=1899=21199y = 18 \implies y = \frac{18}{99} = \frac{2}{11} Therefore: 4.181818=4+211=46114.181818\ldots = 4 + \frac{2}{11} = \frac{46}{11}
  7. 0.0909090.090909\ldots:

    • Type: Repeating decimal.
    • Fraction: 0.090909=1110.090909\ldots = \frac{1}{11}.
  8. 5.01255.0125:

    • Type: Exact decimal (terminates).
    • Fraction: 5.0125=5012510000=802160=401805.0125 = \frac{50125}{10000} = \frac{802}{160} = \frac{401}{80}.

Let me know if you'd like more details on any of the steps. Here are five related questions to deepen your understanding:

  1. How do you convert a repeating decimal into a fraction?
  2. What is the difference between exact and repeating decimals?
  3. Can a semiperiodic decimal always be converted to a simple fraction?
  4. What methods exist to simplify complex fractions?
  5. How does the position of the repeating part in a decimal affect the conversion process?

Tip: Always check if a fraction can be simplified after converting a decimal. This ensures that the fraction is in its lowest terms.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Decimal Classification
Conversion to Fractions
Exact Decimals
Repeating Decimals
Semi-repeating Decimals

Formulas

x = 0.454545...
100x = 45.454545...
99x = 45
x = 0.181818...
100x = 18.181818...
99x = 18

Theorems

Conversion of Repeating Decimals to Fractions

Suitable Grade Level

Grades 7-9