Math Problem Statement

Determine if the following integral converges or diverges.

∫30e−3/t4t5dt∫03e−3/t4t5dt

a)

∫30e−3/t4t5dt=limT→a∫cbe−3/t4t5dt ,∫03e−3/t4t5dt=limT→a∫bce−3/t4t5dt ,

where a=a=       ,

b=b=    

and

c=c=   .

FORMATTING:  To enter a one-sided limit value such as 1+1+ or 1−1−, write 1^+ or 1^- in Möbius.   b) To compute the integral

∫cbe−3/t4t5dt∫bce−3/t4t5dt

that you have found in (a), we need to use the change of variable

u=u=    

c) With the change of variable that you have found in (b), we have

∫cbe−3/t4t5dt=∫CBf(u)du∫bce−3/t4t5dt=∫BCf(u)du

where B=B=     ,

C=C=    

and

f(u)=f(u)=    

d) With the information found in (c), we find that∫cbe−3/t4t5dt=∫CBf(u)du=∫bce−3/t4t5dt=∫BCf(u)du=    

e) Hence,

limT→a∫cbe−3/t4t5dt=limT→a∫CBf(u)du=limT→a∫bce−3/t4t5dt=limT→a∫BCf(u)du=    

f) In conclusion,

∫30e−3/t4t5dt=∫03e−3/t4t5dt=    Write Diverges if the integral is divergent.

Solution

We will analyze the improper integral:

03e3/t4t5dt\int_{0}^{3} e^{-3/t^4} t^5 dt

Step (a): Identifying Limits of Integration

We split the given integral at an intermediate point bb (typically 1), setting:

03e3/t4t5dt=0be3/t4t5dt+b3e3/t4t5dt\int_0^3 e^{-3/t^4} t^5 dt = \int_0^b e^{-3/t^4} t^5 dt + \int_b^3 e^{-3/t^4} t^5 dt

From the given notation:

  • a=0+a = 0^+ (since the lower limit approaches 0)
  • b=1b = 1 (a convenient midpoint)
  • c=3c = 3 (upper limit)

Step (b): Substituting a New Variable

We use the substitution:

u=3t4u = \frac{3}{t^4}

Then, differentiating:

du=12t5dtdt=t512dudu = -\frac{12}{t^5} dt \quad \Rightarrow \quad dt = -\frac{t^5}{12} du

Since t=(3/u)1/4t = (3/u)^{1/4}, we get the transformed limits:

  • t=b=1u=3/14=3t = b = 1 \Rightarrow u = 3/1^4 = 3
  • t=c=3u=3/34=3/81=1/27t = c = 3 \Rightarrow u = 3/3^4 = 3/81 = 1/27

Thus, we transform the integral.

Step (c): Transforming the Integral

Rewriting in terms of uu:

13e3/t4t5dt=1/273eu((3/u)5/412du)\int_1^3 e^{-3/t^4} t^5 dt = \int_{1/27}^{3} e^{-u} \left(-\frac{(3/u)^{5/4}}{12} du\right)

Rewriting the function:

  • B=1/27B = 1/27
  • C=3C = 3
  • f(u)=eu((3/u)5/412)f(u) = e^{-u} \left(-\frac{(3/u)^{5/4}}{12} \right)

Step (d): Evaluating the Integral

The integral remains improper at t=0t = 0, where the denominator in the exponent approaches infinity. This suggests divergence.

Step (e): Final Limit Calculation

limT0+T3e3/t4t5dt\lim_{T \to 0^+} \int_{T}^{3} e^{-3/t^4} t^5 dt

Since the function grows too large near t=0t = 0, the integral diverges.

Step (f): Conclusion

03e3/t4t5dt=Diverges\int_0^3 e^{-3/t^4} t^5 dt = \textbf{Diverges}


Would you like a deeper breakdown of any step? Here are some related questions:

  1. How does improper integration work in general?
  2. Why does the function e3/t4e^{-3/t^4} cause divergence?
  3. How do we decide on substitution choices for integrals?
  4. What happens if we change the exponent in e3/t4e^{-3/t^4}?
  5. How does this compare to other common improper integrals?

Tip: When dealing with improper integrals, always check the behavior at singularities like t=0t = 0 and tt \to \infty.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Improper Integrals
Substitution
Limits
Exponential Functions

Formulas

∫ e^(-3/t^4) t^5 dt
u = 3/t^4
du = -12/t^5 dt

Theorems

Limit Evaluation for Improper Integrals
Substitution in Integrals

Suitable Grade Level

Grades 11-12