Math Problem Statement

Determine the convergence of the series \( \sum_{n=1}^{\infty} (-1)^n \frac{2^n x^n}{n^3} \) using the generalized ratio test.

Solution

The expression given is:

n=1(1)n2nxnn3\sum_{n=1}^{\infty} (-1)^n \frac{2^n x^n}{n^3}

and the heading suggests applying the generalized ratio test to determine convergence.

Step-by-step analysis:

  1. Generalized Ratio Test: For a series an\sum a_n, the ratio test uses: L=limnan+1anL = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| If L<1L < 1, the series converges absolutely. If L>1L > 1, the series diverges. If L=1L = 1, the test is inconclusive.

    Here, an=(1)n2nxnn3a_n = (-1)^n \frac{2^n x^n}{n^3}.

  2. Calculate the ratio: an+1an=(1)n+12n+1xn+1(n+1)3(1)n2nxnn3\frac{a_{n+1}}{a_n} = \frac{(-1)^{n+1} \frac{2^{n+1} x^{n+1}}{(n+1)^3}}{(-1)^n \frac{2^n x^n}{n^3}} Simplify: an+1an=(1)n+1(1)n2n+1xn+1(n+1)3n32nxn\frac{a_{n+1}}{a_n} = \frac{(-1)^{n+1}}{(-1)^n} \cdot \frac{2^{n+1} x^{n+1}}{(n+1)^3} \cdot \frac{n^3}{2^n x^n} Since (1)n+1(1)n=1\frac{(-1)^{n+1}}{(-1)^n} = -1, we get: an+1an=22nxxn(n+1)3n32nxn\frac{a_{n+1}}{a_n} = - \frac{2 \cdot 2^n x \cdot x^n}{(n+1)^3} \cdot \frac{n^3}{2^n x^n} Simplify further: an+1an=2xn3(n+1)3\frac{a_{n+1}}{a_n} = - \frac{2x \cdot n^3}{(n+1)^3}

  3. Take the limit as nn \to \infty: limnan+1an=limn2xn3(n+1)3\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2x \cdot n^3}{(n+1)^3} \right| Expand (n+1)3(n+1)^3 using the binomial theorem: (n+1)3=n3+3n2+3n+1(n+1)^3 = n^3 + 3n^2 + 3n + 1 So: n3(n+1)3=n3n3(1+3n+3n2+1n3)11=1as n.\frac{n^3}{(n+1)^3} = \frac{n^3}{n^3 (1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3})} \to \frac{1}{1} = 1 \quad \text{as } n \to \infty.

    Therefore: limnan+1an=2x\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 2|x|

  4. Convergence Condition: For absolute convergence: 2x<1    x<122|x| < 1 \implies |x| < \frac{1}{2}

Conclusion:

The series converges absolutely for x<12|x| < \frac{1}{2}.

Would you like a more detailed breakdown of any step, or have additional questions? Here are five related questions to explore:

  1. What happens if x=12|x| = \frac{1}{2}?
  2. How does the alternating nature of the series affect the convergence test?
  3. Can we apply other tests, such as the root test, to analyze this series?
  4. What are the implications of absolute versus conditional convergence?
  5. How would the series behave if n3n^3 in the denominator were replaced with n2n^2?

Tip:

When working with convergence tests, ensure you simplify ratio expressions fully before taking limits.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Series Convergence
Generalized Ratio Test
Limits

Formulas

Ratio Test: L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|
Binomial Expansion: (n+1)^3 = n^3 + 3n^2 + 3n + 1

Theorems

Ratio Test for Convergence

Suitable Grade Level

Grades 11-12 or Undergraduate