Math Problem Statement

Find the​ consumers' surplus if the demand function for a particular beverage is given by

​D(q)equals=StartFraction 4000 Over left parenthesis 2 q plus 5 right parenthesis cubed EndFraction4000(2q+5)3

and if the supply and demand are in equilibrium at

qequals=55.

Question content area bottom

Part 1

The​ consumers' surplus is

​$enter your response here.

​(Round to the nearest cent as​ needed.)

Solution

To calculate the consumer's surplus, follow these steps:

Step 1: Define Consumer's Surplus Formula

Consumer's surplus is the area between the demand curve and the equilibrium price line, from q=0q = 0 to q=qeqq = q_{\text{eq}}. Mathematically: Consumer’s Surplus=0qeqD(q)dqPriceqeq\text{Consumer's Surplus} = \int_0^{q_{\text{eq}}} D(q) \, dq - \text{Price} \cdot q_{\text{eq}} where:

  • qeq=55q_{\text{eq}} = 55,
  • D(q)=4000(2q+5)3D(q) = \frac{4000}{(2q + 5)^3}.

Step 2: Find the Equilibrium Price

At qeq=55q_{\text{eq}} = 55, the demand function gives: Peq=D(55)=4000(2(55)+5)3=4000(110+5)3=40001153.P_{\text{eq}} = D(55) = \frac{4000}{(2(55) + 5)^3} = \frac{4000}{(110 + 5)^3} = \frac{4000}{115^3}. Compute 1153115^3: 1153=115×115×115=1,522,875.115^3 = 115 \times 115 \times 115 = 1,522,875. Peq=40001,522,8750.002626.P_{\text{eq}} = \frac{4000}{1,522,875} \approx 0.002626.

Step 3: Compute the Definite Integral

The integral of D(q)=4000(2q+5)3D(q) = \frac{4000}{(2q + 5)^3} is computed as follows: 4000(2q+5)3dq=40002(2q+5)2+C=2000(2q+5)2+C.\int \frac{4000}{(2q + 5)^3} \, dq = -\frac{4000}{2(2q + 5)^2} + C = -\frac{2000}{(2q + 5)^2} + C.

Evaluate this integral from q=0q = 0 to q=55q = 55:

  1. At q=55q = 55: 2000(2q+5)2q=55=2000(2(55)+5)2=20001152.\left. -\frac{2000}{(2q + 5)^2} \right|_{q = 55} = -\frac{2000}{(2(55) + 5)^2} = -\frac{2000}{115^2}. 1152=115×115=13,225,20001152=200013,2250.1512.115^2 = 115 \times 115 = 13,225, \quad \therefore -\frac{2000}{115^2} = -\frac{2000}{13,225} \approx -0.1512.

  2. At q=0q = 0: 2000(2q+5)2q=0=2000(2(0)+5)2=200025=80.\left. -\frac{2000}{(2q + 5)^2} \right|_{q = 0} = -\frac{2000}{(2(0) + 5)^2} = -\frac{2000}{25} = -80.

Now compute the definite integral: 055D(q)dq=(0.1512)(80)79.8488.\int_0^{55} D(q) \, dq = (-0.1512) - (-80) \approx 79.8488.

Step 4: Compute Consumer's Surplus

Finally, subtract the rectangle area (PeqqeqP_{\text{eq}} \cdot q_{\text{eq}}) from the integral: Consumer’s Surplus=79.8488(0.00262655)79.84880.1444379.70.\text{Consumer's Surplus} = 79.8488 - (0.002626 \cdot 55) \approx 79.8488 - 0.14443 \approx 79.70.

Final Answer:

The consumer's surplus is approximately $79.70.


Would you like a detailed breakdown or clarification on any step?

5 Related Questions:

  1. How is consumer surplus affected if equilibrium quantity changes?
  2. Can you explain the economic significance of consumer surplus?
  3. How does the shape of the demand curve influence surplus calculations?
  4. What happens to the surplus if the price decreases below equilibrium?
  5. How is consumer surplus used in welfare economics?

Tip:

Always round intermediate steps to a few extra decimal places to avoid rounding errors in final answers.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Consumer's Surplus
Definite Integration
Equilibrium Analysis
Demand Function

Formulas

Consumer's Surplus = ∫(from 0 to q_eq) D(q) dq - Price × q_eq
Demand Function: D(q) = 4000 / (2q + 5)^3
Integration of D(q): ∫(4000 / (2q + 5)^3) dq = -2000 / (2q + 5)^2 + C

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Undergraduate - Economics or Advanced Calculus