Math Problem Statement

Calculate the consumer surplus (in dollars) at the unit price p̄ = 9 for the demand equation p = 23 - 2q^(1/3). Recollect the consumer surplus, CS = ∫[D(q) - p̄] dq.

Solution

To calculate the consumer surplus (CSCS) for the given demand equation p=232q13p = 23 - 2q^{\frac{1}{3}} at a unit price pˉ=9\bar{p} = 9, we use the formula for consumer surplus:

CS=0qˉ[D(q)pˉ]dqCS = \int_0^{\bar{q}} \left[ D(q) - \bar{p} \right] dq

Here:

  • D(q)D(q) is the demand function (in terms of price),
  • pˉ=9\bar{p} = 9,
  • qˉ\bar{q} is the quantity where p=pˉp = \bar{p}.

Step 1: Find qˉ\bar{q}

Substitute pˉ=9\bar{p} = 9 into the demand equation to find qˉ\bar{q}: 9=232q139 = 23 - 2q^{\frac{1}{3}} 2q13=2392q^{\frac{1}{3}} = 23 - 9 2q13=142q^{\frac{1}{3}} = 14 q13=7q^{\frac{1}{3}} = 7 q=73=343q = 7^3 = 343

So, qˉ=343\bar{q} = 343.

Step 2: Set up the integral

The consumer surplus formula becomes: CS=0343[(232q13)9]dqCS = \int_0^{343} \left[ (23 - 2q^{\frac{1}{3}}) - 9 \right] dq CS=0343[142q13]dqCS = \int_0^{343} \left[ 14 - 2q^{\frac{1}{3}} \right] dq

Step 3: Solve the integral

Separate the integral: CS=034314dq03432q13dqCS = \int_0^{343} 14 \, dq - \int_0^{343} 2q^{\frac{1}{3}} dq

First term:

034314dq=14q0343=14(343)14(0)=4802\int_0^{343} 14 \, dq = 14q \Big|_0^{343} = 14(343) - 14(0) = 4802

Second term:

03432q13dq=20343q13dq\int_0^{343} 2q^{\frac{1}{3}} dq = 2 \int_0^{343} q^{\frac{1}{3}} dq Use the power rule for integration (qndq=qn+1n+1\int q^n \, dq = \frac{q^{n+1}}{n+1}): q13dq=q4343=34q43\int q^{\frac{1}{3}} dq = \frac{q^{\frac{4}{3}}}{\frac{4}{3}} = \frac{3}{4} q^{\frac{4}{3}} 0343q13dq=34q430343=34(34343043)\int_0^{343} q^{\frac{1}{3}} dq = \frac{3}{4} q^{\frac{4}{3}} \Big|_0^{343} = \frac{3}{4} (343^{\frac{4}{3}} - 0^{\frac{4}{3}}) Since 34313=7343^{\frac{1}{3}} = 7: 34343=(34313)4=74=2401343^{\frac{4}{3}} = (343^{\frac{1}{3}})^4 = 7^4 = 2401 0343q13dq=34(2401)=1800.75\int_0^{343} q^{\frac{1}{3}} dq = \frac{3}{4} (2401) = 1800.75 03432q13dq=2(1800.75)=3601.5\int_0^{343} 2q^{\frac{1}{3}} dq = 2(1800.75) = 3601.5

Step 4: Compute the consumer surplus

CS=48023601.5=1200.5CS = 4802 - 3601.5 = 1200.5

Final Answer:

The consumer surplus is $1200.50.

Would you like additional details or further assistance?


Related Questions:

  1. How does the consumer surplus change if the price is increased?
  2. What is the maximum possible consumer surplus for this demand curve?
  3. How would producer surplus be calculated in this case?
  4. How does consumer surplus relate to elasticity of demand?
  5. Can the formula for D(q)D(q) represent inelastic or elastic demand?

Tip: Always verify that your units (e.g., dollars, quantity) are consistent across calculations.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Consumer surplus
Demand equations
Definite integration

Formulas

Consumer surplus formula: CS = ∫[D(q) - p̄] dq
Power rule for integration: ∫q^n dq = q^(n+1)/(n+1)

Theorems

Integration properties

Suitable Grade Level

Undergraduate Economics/Mathematics