Math Problem Statement

hw14.3

Construct a proof for the argument: P ↔ ¬Q ∴ ¬(P ↔ Q)

1 P ↔ ¬Q

hw14.4

Construct a proof for the argument: ¬(P ↔ Q) ∴ P → ¬Q

1 ¬(P ↔ Q)

hw14.6

Construct a proof for the argument: Fb ∨ ∀xGx ∴ ∀x(Fb ∨ Gx)

1 Fb ∨ ∀xGx

Using the checker:

Rule names (full and abbreviated)

modus ponens ->E

modus tollens MT

modus tollendo ponens DS

double negation DNE

addition vI

adjunction ^I

simplification ^E

bicondition <->I

equivalence <->E

repeat Rep

conditional derivation ->I

reductio ad absurdum RAA

universal instantiation AE

universal derivation AI

existential instantiation EE

existential generalization EI

identity introduction =I

substitution of identicals =E

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Propositional Logic
Biconditional Elimination
Reductio Ad Absurdum
Universal Quantification

Formulas

Biconditional: P ↔ Q ↔ (P → Q) ∧ (Q → P)
Modus Ponens: If P → Q and P, then Q
Modus Tollens: If P → Q and ¬Q, then ¬P
Universal Generalization: ∀x(P(x)) if P(x) holds for arbitrary x

Theorems

Biconditional Elimination
Conditional Derivation
Universal Derivation

Suitable Grade Level

Undergraduate