Math Problem Statement

Use technology to construct the confidence intervals for the population variance sigmaσsquared2 and the population standard deviation sigmaσ. Assume the sample is taken from a normally distributed population. cequals=0.990.99​, ssquared2equals=12.2512.25​, nequals=2525 Question content area bottom Part 1 The confidence interval for the population variance is

Solution

To construct the confidence interval for the population variance σ2\sigma^2 and standard deviation σ\sigma based on the provided sample variance s2=12.25s^2 = 12.25, sample size n=25n = 25, and confidence level c=0.99c = 0.99, we will use the Chi-squared distribution.

Steps to Calculate the Confidence Interval for Variance

  1. Determine the Degrees of Freedom: df=n1=251=24df = n - 1 = 25 - 1 = 24

  2. Find the Chi-squared critical values:

    • For a 99% confidence level, the significance level α=10.99=0.01\alpha = 1 - 0.99 = 0.01.
    • The critical values are found using the Chi-squared distribution:
      • χα/22\chi^2_{\alpha/2} for df=24df = 24
      • χ1α/22\chi^2_{1 - \alpha/2} for df=24df = 24

    Using a Chi-squared table or calculator:

    • χ0.005,24242.98\chi^2_{0.005, 24} \approx 42.98
    • χ0.995,2429.59\chi^2_{0.995, 24} \approx 9.59
  3. Calculate the Confidence Interval for Variance: ((n1)s2χ1α/22,(n1)s2χα/22)\left( \frac{(n-1)s^2}{\chi^2_{1 - \alpha/2}}, \frac{(n-1)s^2}{\chi^2_{\alpha/2}} \right)

    Plugging in the values: (24×12.2542.98,24×12.259.59)\left( \frac{24 \times 12.25}{42.98}, \frac{24 \times 12.25}{9.59} \right)

    Calculating the limits:

    • Lower limit: 24×12.2542.986.87\frac{24 \times 12.25}{42.98} \approx 6.87
    • Upper limit: 24×12.259.5930.66\frac{24 \times 12.25}{9.59} \approx 30.66

Final Confidence Interval for Variance

Confidence interval for σ2:(6.87,30.66)\text{Confidence interval for } \sigma^2: (6.87, 30.66)

Confidence Interval for Standard Deviation

To find the confidence interval for the population standard deviation σ\sigma, simply take the square roots of the variance limits: (6.87,30.66)(2.62,5.53)\left( \sqrt{6.87}, \sqrt{30.66} \right) \approx (2.62, 5.53)

Final Confidence Interval for Standard Deviation

Confidence interval for σ:(2.62,5.53)\text{Confidence interval for } \sigma: (2.62, 5.53)

Would you like more details or have any questions about this process? Here are some related questions for further exploration:

  1. How does the choice of confidence level affect the width of the confidence interval?
  2. What assumptions must be met for using the Chi-squared distribution in this context?
  3. How can we interpret the confidence intervals for variance and standard deviation?
  4. What are the implications of a larger sample size on the confidence intervals?
  5. How does the method for calculating confidence intervals differ for non-normal distributions?

Tip: Always check if the underlying assumptions of your statistical methods are met before interpreting results.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Confidence Intervals
Chi-squared Distribution

Formulas

Confidence interval for variance: \( \left( \frac{(n-1)s^2}{\chi^2_{1 - \alpha/2}}, \frac{(n-1)s^2}{\chi^2_{\alpha/2}} \right) \)
Confidence interval for standard deviation: \( \left( \sqrt{\text{lower variance limit}}, \sqrt{\text{upper variance limit}} \right) \)

Theorems

Chi-squared Distribution

Suitable Grade Level

Undergraduate