Math Problem Statement

Question content area top Part 1 Construct a 90 %90% confidence interval for mu 1 minus mu 2μ1−μ2 with the sample statistics for mean cholesterol content of a hamburger from two fast food chains and confidence interval construction formula below. Assume the populations are approximately normal with unequal variances. Stats x overbar 1 equals 133 mg comma s 1 equals 3.98 mg comma n 1 equals 13x1=133 mg, s1=3.98 mg, n1=13 x overbar 2 equals 121 mg comma s 2 equals 2.23 mg comma n 2 equals 18x2=121 mg, s2=2.23 mg, n2=18 ConfidenceConfidence interval wheninterval when variances arevariances are not equal left parenthesis x overbar 1 minus x overbar 2 right parenthesis minus t Subscript c Baseline StartRoot StartFraction s Subscript 1 Superscript 2 Over n 1 EndFraction plus StartFraction s Subscript 2 Superscript 2 Over n 2 EndFraction EndRoot less than mu 1 minus mu 2 less than left parenthesis x overbar 1 minus x overbar 2 right parenthesis plus t Subscript c Baseline StartRoot StartFraction s Subscript 1 Superscript 2 Over n 1 EndFraction plus StartFraction s Subscript 2 Superscript 2 Over n 2 EndFraction EndRootx1−x2−tc s21 n1+ s22 n2<μ1−μ2<x1−x2+tc s21 n1+ s22 n2 d.f. is the smaller of n 1n1minus−1 or n 2n2minus−1 Question content area bottom Part 1 Enter the endpoints of the interval. nothing less than mu 1 minus mu 2 less than nothingenter your response here<μ1−μ2<enter your response here ​(Round to the nearest integer as​ needed.)

Solution

To construct a 90% confidence interval for μ1μ2\mu_1 - \mu_2, we will use the given statistics and the provided formula. The confidence interval formula for the difference in means when variances are not equal is given by:

(xˉ1xˉ2)±tcs12n1+s22n2(\bar{x}_1 - \bar{x}_2) \pm t_c \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}

First, we need to determine the degrees of freedom (d.f.) for the t-distribution. According to the problem, d.f. is the smaller of n11n_1 - 1 or n21n_2 - 1.

Given:

  • xˉ1=133\bar{x}_1 = 133 mg
  • s1=3.98s_1 = 3.98 mg
  • n1=13n_1 = 13
  • xˉ2=121\bar{x}_2 = 121 mg
  • s2=2.23s_2 = 2.23 mg
  • n2=18n_2 = 18

The degrees of freedom is: d.f.=min(n11,n21)=min(131,181)=min(12,17)=12\text{d.f.} = \min(n_1 - 1, n_2 - 1) = \min(13 - 1, 18 - 1) = \min(12, 17) = 12

Next, we look up the critical value tct_c for a 90% confidence level and 12 degrees of freedom. From the t-distribution table, tc1.782t_c \approx 1.782.

Now we can calculate the standard error (SE):

SE=s12n1+s22n2=(3.98)213+(2.23)218SE = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \sqrt{\frac{(3.98)^2}{13} + \frac{(2.23)^2}{18}}

Calculate each component:

(3.98)213=15.8404131.2185\frac{(3.98)^2}{13} = \frac{15.8404}{13} \approx 1.2185 (2.23)218=4.9729180.2763\frac{(2.23)^2}{18} = \frac{4.9729}{18} \approx 0.2763

Thus,

SE=1.2185+0.2763=1.49481.222SE = \sqrt{1.2185 + 0.2763} = \sqrt{1.4948} \approx 1.222

Now calculate the confidence interval:

(xˉ1xˉ2)±tcSE=(133121)±1.7821.222(\bar{x}_1 - \bar{x}_2) \pm t_c \cdot SE = (133 - 121) \pm 1.782 \cdot 1.222

Calculate the difference in means and the margin of error:

xˉ1xˉ2=133121=12\bar{x}_1 - \bar{x}_2 = 133 - 121 = 12 [ \text{Margin of Error} = 1.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Confidence Intervals
T-Distribution
Standard Error

Formulas

Confidence Interval for Difference in Means

Theorems

Student's t-Distribution

Suitable Grade Level

College Level