Math Problem Statement

Misalkan sebuah perusahaan riset pasar disewa untuk mengestimasi persentase orang dewasa yang tinggal di kota besar yang memiliki ponsel. Dari penduduk dewasa dipilih secara acak untuk menentukan apakah mereka memiliki ponsel. Dari 426 orang yang disurvei, 153 menjawab ya (mereka memiliki ponsel). Dengan menggunakan tingkat kepercayaan 95%, hitung estimasi interval untuk proporsi sebenarnya dari penduduk dewasa kota X yang memiliki ponsel.

Solution

To solve this problem, we need to calculate a 95% confidence interval for the population proportion pp of adults in city X who own a mobile phone.

Step-by-Step Solution:

  1. Define the Sample Proportion:

    • Given:
      • Total sample size n=426n = 426
      • Number of people who own a phone x=153x = 153
    • Sample proportion p^\hat{p} is calculated as: p^=xn=1534260.3592\hat{p} = \frac{x}{n} = \frac{153}{426} \approx 0.3592
  2. Determine the Confidence Level and Critical Value:

    • For a 95% confidence level, the critical value zz (for a standard normal distribution) is approximately 1.96.
  3. Calculate the Standard Error (SE):

    • Standard error for the proportion is given by: SE=p^(1p^)nSE = \sqrt{\frac{\hat{p} (1 - \hat{p})}{n}}
    • Substituting the values: SE=0.3592×(10.3592)4260.0233SE = \sqrt{\frac{0.3592 \times (1 - 0.3592)}{426}} \approx 0.0233
  4. Calculate the Margin of Error (ME):

    • The margin of error is ME=z×SEME = z \times SE: ME=1.96×0.02330.0457ME = 1.96 \times 0.0233 \approx 0.0457
  5. Find the Confidence Interval:

    • The 95% confidence interval is given by: p^ME<p<p^+ME\hat{p} - ME < p < \hat{p} + ME
    • Substituting the values: 0.35920.0457<p<0.3592+0.04570.3592 - 0.0457 < p < 0.3592 + 0.0457 0.3135<p<0.40490.3135 < p < 0.4049

Answer:

The 95% confidence interval for pp is approximately: 0.31<p<0.400.31 < p < 0.40

Would you like more details or have any questions?


Related Questions:

  1. How would the confidence interval change if the confidence level was increased to 99%?
  2. What is the effect of a larger sample size on the width of the confidence interval?
  3. How would we calculate the confidence interval if the sample proportion was unknown?
  4. How does changing the sample size affect the standard error of the proportion?
  5. What assumptions are necessary for constructing a confidence interval in this scenario?

Tip:

For a larger sample, the confidence interval becomes narrower, meaning we estimate the true proportion more precisely.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Confidence Interval
Proportion

Formulas

Sample proportion \( \hat{p} = \frac{x}{n} \)
Standard Error \( SE = \sqrt{\frac{\hat{p} (1 - \hat{p})}{n}} \)
Confidence Interval \( \hat{p} - ME < p < \hat{p} + ME \)

Theorems

Central Limit Theorem

Suitable Grade Level

Undergraduate Level or Advanced High School