Math Problem Statement

Give step by step calculations for the above questions

Give step by step calculations for the above questions

Solution

Problem Breakdown

The problem asks to calculate confidence intervals for θ\theta (mean of Gaussian random variables X1,,XNX_1, \ldots, X_N) with known variance σ2=1\sigma^2 = 1. N=30N = 30 and confidence level 1α1 - \alpha.

The formulas provided are:

  1. (a) Z=θ^2.14Nθθ^+2.14NZ = \hat{\theta} - \frac{2.14}{\sqrt{N}} \leq \theta \leq \hat{\theta} + \frac{2.14}{\sqrt{N}}
  2. (b) Z=θ^1.85Nθθ^+1.85NZ = \hat{\theta} - \frac{1.85}{\sqrt{N}} \leq \theta \leq \hat{\theta} + \frac{1.85}{\sqrt{N}}

Now, let’s compute these step by step.


Step 1: Identify parameters

  • N=30N = 30
  • σ2=1σ=1\sigma^2 = 1 \Rightarrow \sigma = 1
  • N=30=5.477\sqrt{N} = \sqrt{30} = 5.477 (approximately)

Step 2: Confidence Interval (a)

The formula is: θ^2.14Nθθ^+2.14N\hat{\theta} - \frac{2.14}{\sqrt{N}} \leq \theta \leq \hat{\theta} + \frac{2.14}{\sqrt{N}}

  1. Calculate the margin of error: 2.14N=2.145.4770.3907\frac{2.14}{\sqrt{N}} = \frac{2.14}{5.477} \approx 0.3907

  2. Substitute the value of the margin of error: θ[θ^0.3907,θ^+0.3907]\theta \in \left[ \hat{\theta} - 0.3907, \hat{\theta} + 0.3907 \right]

Thus, the confidence interval is: [θ^0.3907,θ^+0.3907]\left[ \hat{\theta} - 0.3907, \hat{\theta} + 0.3907 \right]


Step 3: Confidence Interval (b)

The formula is: θ^1.85Nθθ^+1.85N\hat{\theta} - \frac{1.85}{\sqrt{N}} \leq \theta \leq \hat{\theta} + \frac{1.85}{\sqrt{N}}

  1. Calculate the margin of error: 1.85N=1.855.4770.3378\frac{1.85}{\sqrt{N}} = \frac{1.85}{5.477} \approx 0.3378

  2. Substitute the value of the margin of error: θ[θ^0.3378,θ^+0.3378]\theta \in \left[ \hat{\theta} - 0.3378, \hat{\theta} + 0.3378 \right]

Thus, the confidence interval is: [θ^0.3378,θ^+0.3378]\left[ \hat{\theta} - 0.3378, \hat{\theta} + 0.3378 \right]


Final Results

  1. For (a): Confidence interval is: [θ^0.3907,θ^+0.3907]\left[ \hat{\theta} - 0.3907, \hat{\theta} + 0.3907 \right]

  2. For (b): Confidence interval is: [θ^0.3378,θ^+0.3378]\left[ \hat{\theta} - 0.3378, \hat{\theta} + 0.3378 \right]

Do you want further clarifications, or should I assist with anything else?

Follow-Up Questions

  1. What is the significance of using different constants (e.g., 2.14 and 1.85) in the formulas?
  2. How does increasing NN affect the width of the confidence intervals?
  3. Can you explain why the variance σ2\sigma^2 affects the margin of error?
  4. How does the confidence level 1α1-\alpha relate to the values 2.14 and 1.85?
  5. Would the confidence interval change if σ2\sigma^2 were unknown?

Tip:

The width of a confidence interval is inversely proportional to N\sqrt{N}, so increasing the sample size NN decreases the interval width, providing a more precise estimate.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Confidence Intervals
Gaussian Distribution

Formulas

Confidence Interval: θ ∈ [θ̂ - Z/√N, θ̂ + Z/√N]
Margin of Error: Z/√N

Theorems

Properties of Gaussian Distribution
Central Limit Theorem

Suitable Grade Level

Undergraduate (Statistics or Mathematics)