Math Problem Statement

Condense the following logarithmic expressions: 1. log₃ 5 + log₃ 2 2. log₂ R + log₂ S - 2 log₂ T 3. log₅ (x² - 1) - log₅ (x - 1) 4. 4 ln (x - 3) + ½ ln x 5. ln x - ln y + ln z

Solution

Let’s condense the given logarithmic expressions step by step:

1. log35+log32\log_3 5 + \log_3 2

Using the logarithmic property logbA+logbB=logb(AB)\log_b A + \log_b B = \log_b (A \cdot B): log35+log32=log3(52)=log310\log_3 5 + \log_3 2 = \log_3 (5 \cdot 2) = \log_3 10

2. log2R+log2S2log2T\log_2 R + \log_2 S - 2 \log_2 T

Using the properties:

  • logbA+logbB=logb(AB)\log_b A + \log_b B = \log_b (A \cdot B)
  • nlogbA=logb(An)n \log_b A = \log_b (A^n): log2R+log2S2log2T=log2(RS)log2(T2)\log_2 R + \log_2 S - 2 \log_2 T = \log_2 (R \cdot S) - \log_2 (T^2) Using logbAlogbB=logb(AB)\log_b A - \log_b B = \log_b \left(\frac{A}{B}\right): log2R+log2S2log2T=log2(RST2)\log_2 R + \log_2 S - 2 \log_2 T = \log_2 \left(\frac{R \cdot S}{T^2}\right)

3. log5(x21)log5(x1)\log_5 (x^2 - 1) - \log_5 (x - 1)

Using logbAlogbB=logb(AB)\log_b A - \log_b B = \log_b \left(\frac{A}{B}\right): log5(x21)log5(x1)=log5(x21x1)\log_5 (x^2 - 1) - \log_5 (x - 1) = \log_5 \left(\frac{x^2 - 1}{x - 1}\right) Since x21=(x1)(x+1)x^2 - 1 = (x - 1)(x + 1), the expression simplifies to: log5((x1)(x+1)x1)=log5(x+1)\log_5 \left(\frac{(x - 1)(x + 1)}{x - 1}\right) = \log_5 (x + 1)

4. 4ln(x3)+12lnx4 \ln (x - 3) + \frac{1}{2} \ln x

Using nlnA=ln(An)n \ln A = \ln (A^n): 4ln(x3)+12lnx=ln((x3)4)+ln(x1/2)4 \ln (x - 3) + \frac{1}{2} \ln x = \ln ((x - 3)^4) + \ln (x^{1/2}) Using lnA+lnB=ln(AB)\ln A + \ln B = \ln (A \cdot B): ln((x3)4)+ln(x1/2)=ln((x3)4x1/2)\ln ((x - 3)^4) + \ln (x^{1/2}) = \ln \left((x - 3)^4 \cdot x^{1/2}\right) This simplifies to: ln(x1/2(x3)4)\ln \left(x^{1/2} (x - 3)^4\right)

5. lnxlny+lnz\ln x - \ln y + \ln z

Using lnAlnB=ln(AB)\ln A - \ln B = \ln \left(\frac{A}{B}\right) and lnA+lnB=ln(AB)\ln A + \ln B = \ln (A \cdot B): lnxlny+lnz=ln(xy)+lnz\ln x - \ln y + \ln z = \ln \left(\frac{x}{y}\right) + \ln z ln(xy)+lnz=ln(xyz)\ln \left(\frac{x}{y}\right) + \ln z = \ln \left(\frac{x}{y} \cdot z\right) This simplifies to: ln(xzy)\ln \left(\frac{x \cdot z}{y}\right)


Final Results:

  1. log310\log_3 10
  2. log2(RST2)\log_2 \left(\frac{R \cdot S}{T^2}\right)
  3. log5(x+1)\log_5 (x + 1)
  4. ln(x1/2(x3)4)\ln \left(x^{1/2} (x - 3)^4\right)
  5. ln(xzy)\ln \left(\frac{x \cdot z}{y}\right)

Would you like additional steps or explanations? Here are five questions to extend your understanding:

  1. What are the key logarithmic rules used in condensing these expressions?
  2. How does ln\ln relate to log\log, and when are they interchangeable?
  3. Why do logarithmic properties require the same base for addition/subtraction?
  4. What is the significance of condensing logarithmic expressions in problem-solving?
  5. How can these properties be used to simplify complex equations?

Tip: Always check if terms can be factored or simplified before applying logarithmic properties!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Properties of Logarithms
Simplification

Formulas

logₐ A + logₐ B = logₐ (A * B)
logₐ A - logₐ B = logₐ (A / B)
n logₐ A = logₐ (A^n)

Theorems

Logarithmic Properties

Suitable Grade Level

Grades 9-12