Math Problem Statement

use riemann’s sums

Use the definition of the definite integral as a limit of Riemann sums to compute the integral of (3 - 2x) dx from -1 to 3. Show all work, carrying the limit along.

Solution

To solve the given integral using Riemann sums as specified in the problem, let’s carefully break down the task:

Problem Recap:

We need to evaluate the definite integral 13(32x)dx\int_{-1}^3 (3 - 2x) \, dx using the limit definition of the integral through Riemann sums. This involves dividing the interval into nn subintervals and applying the summation formula. Here's the step-by-step approach:


Step 1: Riemann Sum Formula

The integral is defined as the limit of Riemann sums: abf(x)dx=limni=1nf(xi)Δx\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x where:

  • a=1a = -1, b=3b = 3 (the limits of integration),
  • f(x)=32xf(x) = 3 - 2x,
  • Δx=ban=3(1)n=4n\Delta x = \frac{b-a}{n} = \frac{3 - (-1)}{n} = \frac{4}{n},
  • xix_i^* is the representative point in the ii-th subinterval.

Step 2: Choose xix_i^* (Right Endpoint)

For simplicity, let xix_i^* be the right endpoint of each subinterval: xi=a+iΔx=1+i4n.x_i^* = a + i \Delta x = -1 + i \frac{4}{n}.


Step 3: Substitute into the Riemann Sum

The Riemann sum becomes: i=1nf(xi)Δx=i=1n[32(1+i4n)]4n.\sum_{i=1}^n f(x_i^*) \Delta x = \sum_{i=1}^n \left[3 - 2\left(-1 + i \frac{4}{n}\right)\right] \cdot \frac{4}{n}. Simplify f(xi)f(x_i^*): f(xi)=32(1+i4n)=3+28in=58in.f(x_i^*) = 3 - 2\left(-1 + i \frac{4}{n}\right) = 3 + 2 - \frac{8i}{n} = 5 - \frac{8i}{n}. Thus, the Riemann sum becomes: i=1n(58in)4n.\sum_{i=1}^n \left(5 - \frac{8i}{n}\right) \cdot \frac{4}{n}. Distribute 4n\frac{4}{n}: i=1n(2032in)1n.\sum_{i=1}^n \left(20 - \frac{32i}{n}\right) \cdot \frac{1}{n}.


Step 4: Split the Sum

Separate the terms in the summation: i=1n(2032in)1n=4ni=1n532n2i=1ni.\sum_{i=1}^n \left(20 - \frac{32i}{n}\right) \cdot \frac{1}{n} = \frac{4}{n} \sum_{i=1}^n 5 - \frac{32}{n^2} \sum_{i=1}^n i.

  1. The sum of a constant cc: i=1nc=cn.\sum_{i=1}^n c = c \cdot n. So: 4ni=1n5=20.\frac{4}{n} \sum_{i=1}^n 5 = 20.

  2. The sum of ii: i=1ni=n(n+1)2.\sum_{i=1}^n i = \frac{n(n+1)}{2}. So: 32n2i=1ni=32n2n(n+1)2=16(n+1)n.\frac{32}{n^2} \sum_{i=1}^n i = \frac{32}{n^2} \cdot \frac{n(n+1)}{2} = \frac{16(n+1)}{n}.


Step 5: Take the Limit as nn \to \infty

Combine the results: i=1n(58in)4n=2016(n+1)n.\sum_{i=1}^n \left(5 - \frac{8i}{n}\right) \cdot \frac{4}{n} = 20 - \frac{16(n+1)}{n}. As nn \to \infty: 16(n+1)n=16n+16n=16+16n16.\frac{16(n+1)}{n} = \frac{16n + 16}{n} = 16 + \frac{16}{n} \to 16. Thus: 2016=4.20 - 16 = 4.


Final Answer:

13(32x)dx=4.\int_{-1}^3 (3 - 2x) \, dx = 4.


Would you like further clarification on any step or additional details?


Related Questions:

  1. How do Riemann sums differ when using left endpoints versus right endpoints?
  2. How would the summation change if we used midpoint Riemann sums?
  3. Can we derive the same result using the trapezoidal rule for this integral?
  4. How does the definite integral geometrically represent the area under the curve?
  5. How do we evaluate improper integrals using similar limit techniques?

Tip: When working with Riemann sums, always simplify f(xi)f(x_i^*) before substituting it into the summation—it saves time and avoids algebraic errors!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Definite Integrals
Riemann Sums
Limit of a Function

Formulas

∫(a to b) f(x) dx = lim(n → ∞) Σ[f(x_i*) Δx], where Δx = (b - a)/n and x_i* is a sample point
Δx = (b - a) / n
x_i* = a + iΔx for the right endpoint

Theorems

Fundamental Theorem of Calculus

Suitable Grade Level

Grades 11-12 (Advanced High School) or Early College