Math Problem Statement

Find all roots (solutions) of the equation 2z^4 + (1 - √3i) = 0

Solution

To solve the given equation:

2z4+(13i)=02z^4 + (1 - \sqrt{3}i) = 0

we need to find the roots zz. Let's proceed step by step:

Step 1: Simplify the Equation

Rearrange the equation to isolate z4z^4:

2z4=(13i)2z^4 = - (1 - \sqrt{3}i)

Divide by 2 on both sides:

z4=(13i)2z^4 = \frac{-(1 - \sqrt{3}i)}{2}

z4=1+3i2z^4 = \frac{-1 + \sqrt{3}i}{2}

Step 2: Express the Right Side in Polar Form

The complex number 1+3i2\frac{-1 + \sqrt{3}i}{2} can be expressed in polar form as:

  1. Magnitude: r=(12)2+(32)2=14+34=1=1|r| = \sqrt{\left(\frac{-1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1

  2. Argument: Since 1/2-1/2 is the real part and 3/2\sqrt{3}/2 is the imaginary part, the argument (angle) θ\theta is: θ=arctan(3/21/2)=arctan(3)=2π3(as the point is in the second quadrant)\theta = \arctan\left(\frac{\sqrt{3}/2}{-1/2}\right) = \arctan(-\sqrt{3}) = \frac{2\pi}{3} \, (\text{as the point is in the second quadrant})

Thus, we can write: \frac{-1 + \sqrt{3}i}{2} = \text{cis}\left(\frac{2\pi}{3}\right) \quad \text{(where \text{cis}(\theta) = \cos(\theta) + i\sin(\theta))}

Step 3: Find the Fourth Roots Using De Moivre's Theorem

De Moivre's Theorem tells us that if z4=rcis(θ)z^4 = r\text{cis}(\theta), then:

z=r4cis(θ+2kπ4),k=0,1,2,3z = \sqrt[4]{r}\text{cis}\left(\frac{\theta + 2k\pi}{4}\right), \, k = 0, 1, 2, 3

Since r=1r = 1, we have r4=1\sqrt[4]{r} = 1. Now, we need to find the angles:

z=cis(2π3+2kπ4)z = \text{cis}\left(\frac{\frac{2\pi}{3} + 2k\pi}{4}\right)

z=cis(2π3+2kπ)/4z = \text{cis}\left(\frac{2\pi}{3} + 2k\pi \right) / 4

Step 4: Calculate the Four Roots

We evaluate k=0,1,2,3k = 0, 1, 2, 3 to find the four solutions:

  1. For k=0k = 0: z1=cis(2π12)=cis(π6)=cos(π6)+isin(π6)=32+12iz_1 = \text{cis}\left(\frac{2\pi}{12}\right) = \text{cis}\left(\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} + \frac{1}{2}i

  2. For k=1k = 1: z2=cis(8π12)=cis(2π3)=cos(2π3)+isin(2π3)=12+32iz_2 = \text{cis}\left(\frac{8\pi}{12}\right) = \text{cis}\left(\frac{2\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i

  3. For k=2k = 2: z3=cis(14π12)=cis(7π6)=cos(7π6)+isin(7π6)=3212iz_3 = \text{cis}\left(\frac{14\pi}{12}\right) = \text{cis}\left(\frac{7\pi}{6}\right) = \cos\left(\frac{7\pi}{6}\right) + i\sin\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2} - \frac{1}{2}i

  4. For k=3k = 3: z4=cis(20π12)=cis(5π3)=cos(5π3)+isin(5π3)=1232iz_4 = \text{cis}\left(\frac{20\pi}{12}\right) = \text{cis}\left(\frac{5\pi}{3}\right) = \cos\left(\frac{5\pi}{3}\right) + i\sin\left(\frac{5\pi}{3}\right) = \frac{1}{2} - \frac{\sqrt{3}}{2}i

Final Solutions:

z1=32+12i,  z2=12+32i,  z3=3212i,  z4=1232iz_1 = \frac{\sqrt{3}}{2} + \frac{1}{2}i, \; z_2 = -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \; z_3 = -\frac{\sqrt{3}}{2} - \frac{1}{2}i, \; z_4 = \frac{1}{2} - \frac{\sqrt{3}}{2}i

Would you like a detailed breakdown of any step or further explanation?

Related Questions:

  1. What is De Moivre's Theorem and how is it applied to complex roots?
  2. How do you convert a complex number from Cartesian form to polar form?
  3. What are the characteristics of complex roots for polynomial equations?
  4. How do magnitudes and angles affect the solutions of zn=rcis(θ)z^n = r \text{cis}(\theta)?
  5. What is the geometric interpretation of these roots on the complex plane?

Tip:

When working with complex numbers, converting to polar form often simplifies multiplication, division, and finding roots, making the calculations more manageable.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Polar Form
Roots of Unity
De Moivre's Theorem

Formulas

z^4 = r * cis(θ)
r = √(a² + b²)
θ = arctan(b/a)
De Moivre's Theorem: z = r^(1/n) * cis((θ + 2kπ)/n)

Theorems

De Moivre's Theorem
Roots of Unity

Suitable Grade Level

Undergraduate Mathematics (Complex Analysis)