Math Problem Statement

3^50, 4^40, 5^30 और 6^20 में सबसे बड़ी संख्या कौन-सी है?

Solution

The question in the image asks, "3^50, 4^40, 5^30, और 6^20 में सबसे बड़ी संख्या कौन-सी है?" which translates to:

"Among 350,440,530,3^{50}, 4^{40}, 5^{30}, and 6206^{20}, which is the largest number?"

We need to compare these numbers to find the largest.

Approach:

  1. Take the natural logarithm (ln) of each expression to simplify comparison.

    • ln(350)=50ln(3)\ln(3^{50}) = 50 \cdot \ln(3)
    • ln(440)=40ln(4)\ln(4^{40}) = 40 \cdot \ln(4)
    • ln(530)=30ln(5)\ln(5^{30}) = 30 \cdot \ln(5)
    • ln(620)=20ln(6)\ln(6^{20}) = 20 \cdot \ln(6)
  2. Use approximate logarithm values:

    • ln(3)1.0986\ln(3) \approx 1.0986
    • ln(4)=2ln(2)1.3863\ln(4) = 2 \cdot \ln(2) \approx 1.3863
    • ln(5)1.6094\ln(5) \approx 1.6094
    • ln(6)1.7918\ln(6) \approx 1.7918
  3. Now, compute each:

    • 50ln(3)501.0986=54.9350 \cdot \ln(3) \approx 50 \cdot 1.0986 = 54.93
    • 40ln(4)401.3863=55.4540 \cdot \ln(4) \approx 40 \cdot 1.3863 = 55.45
    • 30ln(5)301.6094=48.2830 \cdot \ln(5) \approx 30 \cdot 1.6094 = 48.28
    • 20ln(6)201.7918=35.8420 \cdot \ln(6) \approx 20 \cdot 1.7918 = 35.84

Conclusion:

The largest value comes from ln(440)55.45\ln(4^{40}) \approx 55.45, so 4404^{40} is the largest number.

Let me know if you need further clarification or details on this method!


Related Questions:

  1. What would happen if the powers of these numbers were doubled?
  2. How does the growth of exponential functions compare to polynomial functions?
  3. Can you compare the values of 7157^{15} and 8128^{12}?
  4. What are the properties of logarithms that make comparisons like these easier?
  5. How do the base numbers affect the comparison if we change them slightly?

Tip: When comparing large exponential numbers, logarithms simplify the problem by turning multiplication into addition!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Exponential Comparison
Logarithms
Powers

Formulas

ln(a^b) = b * ln(a)
ln(3) ≈ 1.0986
ln(4) ≈ 1.3863
ln(5) ≈ 1.6094
ln(6) ≈ 1.7918

Theorems

Logarithmic Properties

Suitable Grade Level

Grades 10-12