Math Problem Statement
Order the expressions by choosing >, <, or =: 1. 2^3 × 2^2 and 2^6, 2. 2^2 × 3^2 and 6^3, 3. 2^3 × 3^2 and 6^2.
Solution
Let's break down the expressions and compare them step by step.
Expressions:
- on the left, on the right.
- on the left, on the right.
- on the left, on the right.
Simplification:
-
First expression: Compare with : So, the first comparison is less than ( < ).
-
Second expression: Compare with : So, the second comparison is also less than ( < ).
-
Third expression: Compare with : So, the third comparison is greater than ( > ).
Final Order:
Let me know if you need further details or have any questions!
Here are 5 related questions for practice:
- Simplify .
- Compare and using exponents.
- What is the value of ?
- Is ?
- Compare with .
Tip: Remember that multiplying powers of the same base means you add the exponents!
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Exponentiation
Order of operations
Formulas
a^m × a^n = a^(m+n)
a^m = a × a × a (m times)
Comparing exponential expressions
Theorems
Properties of exponents
Basic arithmetic and exponent rules
Suitable Grade Level
Grades 6-8