Math Problem Statement

A study of bone density on 5 random women at a hospital produced the following results.

Age 37 41 65 69 73 Bone Density 355 335 330 320 315

Step 3 of 3 : Calculate the coefficient of determination, r2 . Round your answer to three decimal places.

Solution

To calculate the coefficient of determination (r2r^2), we first need to follow these steps:

  1. Find the correlation coefficient rr, which can be calculated using the formula:

r=nxy(x)(y)(nx2(x)2)(ny2(y)2)r = \frac{n\sum{xy} - \left(\sum{x}\right)\left(\sum{y}\right)}{\sqrt{ \left(n\sum{x^2} - \left(\sum{x}\right)^2\right) \left(n\sum{y^2} - \left(\sum{y}\right)^2\right) }}

Where:

  • nn is the number of data points,
  • xx is the independent variable (Age),
  • yy is the dependent variable (Bone Density),
  • xy\sum{xy} is the sum of the product of each pair of xx and yy,
  • x\sum{x}, y\sum{y}, x2\sum{x^2}, and y2\sum{y^2} are the sums of the individual xx values, yy values, squared xx values, and squared yy values, respectively.
  1. Square the correlation coefficient (r2r^2) to get the coefficient of determination.

Let's first calculate all necessary components for the formula.

Given Data:

  • Age (xx): 37, 41, 65, 69, 73
  • Bone Density (yy): 355, 335, 330, 320, 315

We will now compute the necessary sums:

  • x=37+41+65+69+73=285\sum{x} = 37 + 41 + 65 + 69 + 73 = 285
  • y=355+335+330+320+315=1655\sum{y} = 355 + 335 + 330 + 320 + 315 = 1655
  • x2=372+412+652+692+732=1369+1681+4225+4761+5329=23665\sum{x^2} = 37^2 + 41^2 + 65^2 + 69^2 + 73^2 = 1369 + 1681 + 4225 + 4761 + 5329 = 23665
  • y2=3552+3352+3302+3202+3152=126025+112225+108900+102400+99225=549775\sum{y^2} = 355^2 + 335^2 + 330^2 + 320^2 + 315^2 = 126025 + 112225 + 108900 + 102400 + 99225 = 549775
  • xy=(37)(355)+(41)(335)+(65)(330)+(69)(320)+(73)(315)=13135+13735+21450+22080+22995=93395\sum{xy} = (37)(355) + (41)(335) + (65)(330) + (69)(320) + (73)(315) = 13135 + 13735 + 21450 + 22080 + 22995 = 93395

Step 1: Calculate rr

We will now plug the sums into the correlation coefficient formula.

r=5×93395(285×1655)(5×236652852)(5×54977516552)r = \frac{5 \times 93395 - (285 \times 1655)}{\sqrt{ \left(5 \times 23665 - 285^2\right) \left(5 \times 549775 - 1655^2\right) }}

After performing these calculations:

r=466975471075(11832581225)(27488752747025)r = \frac{466975 - 471075}{\sqrt{(118325 - 81225)(2748875 - 2747025)}}

Now simplify:

r=510037100×1850=51006853500051008267.530.617r = \frac{-5100}{\sqrt{37100 \times 1850}} = \frac{-5100}{\sqrt{68535000}} \approx \frac{-5100}{8267.53} \approx -0.617

Step 2: Calculate r2r^2

r2=(0.617)2=0.381r^2 = (-0.617)^2 = 0.381

Final Answer:

The coefficient of determination r2r^2 is 0.381.

Let me know if you need further clarification or details! Here's a list of related questions:

  1. What does the coefficient of determination represent in this context?
  2. How do we interpret the value of r2r^2?
  3. What is the formula for calculating the correlation coefficient rr and why is it important?
  4. How can the coefficient of determination help in predicting bone density based on age?
  5. What are other statistical measures used to analyze relationships between variables?

Tip: Always check the units and context of your variables when interpreting the coefficient of determination!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Correlation Coefficient
Coefficient of Determination

Formulas

r = (nΣxy - ΣxΣy) / √[(nΣx² - (Σx)²)(nΣy² - (Σy)²)]
r² = (r)²

Theorems

Correlation Coefficient Theory
Coefficient of Determination Theory

Suitable Grade Level

Grades 11-12