Math Problem Statement

You are conducting a test of independence for the claim that there is an association between the row variable and the column variable. Given observed data, calculate expected values, Pearson residuals, and the chi-square test statistic.

Solution

Let's solve this step-by-step:

We are testing for independence between the row variable and column variable using a chi-square test of independence. To calculate the chi-square statistic, we need to:

  1. Determine row and column totals.
  2. Compute expected counts for each cell.
  3. Calculate the Pearson residuals (observed vs expected).
  4. Find the chi-square test statistic.

Step 1: Observed Table and Totals

From the table:

XYZRow Totals
A346321118
B27531999
Col Totals6111640217
  • Grand Total: 217

Step 2: Expected Counts

The expected count for each cell is calculated as:

Eij=(Row Total)×(Column Total)Grand TotalE_{ij} = \frac{\text{(Row Total)} \times \text{(Column Total)}}{\text{Grand Total}}

We calculate expected counts for all 6 cells:

For Row A:

  • EA,X=118×6121733.17E_{A,X} = \frac{118 \times 61}{217} \approx 33.17
  • EA,Y=118×11621763.07E_{A,Y} = \frac{118 \times 116}{217} \approx 63.07
  • EA,Z=118×4021721.76E_{A,Z} = \frac{118 \times 40}{217} \approx 21.76

For Row B:

  • EB,X=99×6121727.83E_{B,X} = \frac{99 \times 61}{217} \approx 27.83
  • EB,Y=99×11621752.93E_{B,Y} = \frac{99 \times 116}{217} \approx 52.93
  • EB,Z=99×4021718.22E_{B,Z} = \frac{99 \times 40}{217} \approx 18.22

The expected counts table is:

XYZ
A33.1763.0721.76
B27.8352.9318.22

Step 3: Pearson Residuals

The Pearson residual for each cell is:

Rij=OijEijEijR_{ij} = \frac{O_{ij} - E_{ij}}{\sqrt{E_{ij}}}

Using observed OO and expected EE:

Row A:

  • RA,X=3433.1733.170.14R_{A,X} = \frac{34 - 33.17}{\sqrt{33.17}} \approx 0.14
  • RA,Y=6363.0763.070.01R_{A,Y} = \frac{63 - 63.07}{\sqrt{63.07}} \approx -0.01
  • RA,Z=2121.7621.760.52R_{A,Z} = \frac{21 - 21.76}{\sqrt{21.76}} \approx -0.52

Row B:

  • RB,X=2727.8327.830.16R_{B,X} = \frac{27 - 27.83}{\sqrt{27.83}} \approx -0.16
  • RB,Y=5352.9352.930.01R_{B,Y} = \frac{53 - 52.93}{\sqrt{52.93}} \approx 0.01
  • RB,Z=1918.2218.220.58R_{B,Z} = \frac{19 - 18.22}{\sqrt{18.22}} \approx 0.58

The Pearson residuals table is:

XYZ
A0.14-0.01-0.52
B-0.160.010.58

Step 4: Chi-Square Test Statistic

The chi-square statistic is:

χ2=(OijEij)2Eij\chi^2 = \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}}

Calculating for all cells:

Row A:

  • (3433.17)233.170.03\frac{(34 - 33.17)^2}{33.17} \approx 0.03
  • (6363.07)263.070.00\frac{(63 - 63.07)^2}{63.07} \approx 0.00
  • (2121.76)221.760.03\frac{(21 - 21.76)^2}{21.76} \approx 0.03

Row B:

  • (2727.83)227.830.02\frac{(27 - 27.83)^2}{27.83} \approx 0.02
  • (5352.93)252.930.00\frac{(53 - 52.93)^2}{52.93} \approx 0.00
  • (1918.22)218.220.03\frac{(19 - 18.22)^2}{18.22} \approx 0.03

Summing these:

χ2=0.03+0.00+0.03+0.02+0.00+0.03=0.11\chi^2 = 0.03 + 0.00 + 0.03 + 0.02 + 0.00 + 0.03 = 0.11


Final Answer:

The chi-square test statistic is approximately:

χ2=0.11\chi^2 = 0.11


Do you need help interpreting the result or further explanation? Let me know!

Related Questions:

  1. How do you interpret a chi-square test result for independence?
  2. What are the degrees of freedom for this chi-square test?
  3. How would you calculate the p-value for this test statistic?
  4. What assumptions must be met to use the chi-square test?
  5. How can you determine if the association between variables is significant?

Tip: The chi-square test assumes expected counts in all cells are sufficiently large (typically E>5E > 5). Always check this assumption!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Chi-Square Test
Statistical Independence
Contingency Tables

Formulas

Expected Value: E_ij = (Row Total * Column Total) / Grand Total
Pearson Residual: R_ij = (O_ij - E_ij) / sqrt(E_ij)
Chi-Square Test Statistic: χ² = Σ [(O_ij - E_ij)^2 / E_ij]

Theorems

Chi-Square Test of Independence

Suitable Grade Level

Undergraduate Statistics or Advanced High School