Math Problem Statement

Suppose � , �  ⁣ : � → � f,g:R→R are functions such that � g is differentiable at � x and � f is differentiable at � ( � ) g(x). Define � u and � v as in the proof of the chain rule that we gave in class, i.e.

� ( � )

{ � ( � ) − � ( � ) � − � − � ′ ( � ) if � ≠ � 0 if �

� u(t)={ t−x g(t)−g(x) ​ −g ′ (x) 0 ​

if t  ​ =x if t=x ​

and

� ( � )

{ � ( � ) − � ( � ( � ) ) � − � ( � ) − � ′ ( � ( � ) ) if � ≠ � ( � ) 0 if �

� ( � ) v(s)={ s−g(x) f(s)−f(g(x)) ​ −f ′ (g(x)) 0 ​

if s  ​ =g(x) if s=g(x) ​

Suppose that:

For all � t, ∣ � ( � ) ∣ ≤ ∣ � − � ∣ 2 ∣u(t)∣≤∣t−x∣ 2 . For all � s, ∣ � ( � ) ∣ ≤ 3 ∣ � − � ( � ) ∣ ∣v(s)∣≤3∣s−g(x)∣. For all � t, ∣ � ( � ) − � ( � ) ∣ ≤ ∣ � − � ∣ 3 ∣g(t)−g(x)∣≤∣t−x∣ 3 . � ′ ( � )

2 g ′ (x)=2 � ′ ( � ( � ) )

4 f ′ (g(x))=4 If ∣ � − � ∣ ≤ 0.1 ∣t−x∣≤0.1 then what can you say about ∣ � ( � ( � ) ) − � ( � ( � ) ) � − � − � ′ ( � ( � ) ) � ′ ( � ) ∣ ∣ t−x f(g(t))−f(g(x)) ​ −f ′ (g(x))g ′ (x)∣?

∣ � ( � ( � ) ) − � ( � ( � ) ) � − � − � ′ ( � ( � ) ) � ′ ( � ) ∣ ≤ ∣ t−x f(g(t))−f(g(x)) ​ −f ′ (g(x))g ′ (x)∣≤

Solution

To analyze this expression:

f(g(t))f(g(x))txf(g(x))g(x)\left| \frac{f(g(t)) - f(g(x))}{t - x} - f'(g(x)) g'(x) \right|

we'll use the functions uu and vv defined in the problem, as well as the inequalities provided.

Step-by-Step Solution:

  1. Define u(t)u(t):
    For txt \neq x, u(t)=g(t)g(x)txg(x).u(t) = \frac{g(t) - g(x)}{t - x} - g'(x). Since gg is differentiable at xx, we expect that as txt \to x, u(t)0u(t) \to 0.

    Given Bound:
    u(t)tx2.|u(t)| \leq |t - x|^2.

  2. Define v(s)v(s):
    For sg(x)s \neq g(x), v(s)=f(s)f(g(x))sg(x)f(g(x)).v(s) = \frac{f(s) - f(g(x))}{s - g(x)} - f'(g(x)). Since ff is differentiable at g(x)g(x), we expect that as sg(x)s \to g(x), v(s)0v(s) \to 0.

    Given Bound:
    v(s)3sg(x).|v(s)| \leq 3 |s - g(x)|.

  3. Rewrite the Main Expression Using uu and vv:
    We want to evaluate f(g(t))f(g(x))txf(g(x))g(x).\left| \frac{f(g(t)) - f(g(x))}{t - x} - f'(g(x)) g'(x) \right|. Expanding f(g(t))f(g(x))f(g(t)) - f(g(x)) around g(x)g(x) and using the definition of vv, we get f(g(t))f(g(x))tx=(f(g(t))f(g(x)))g(t)g(x)g(t)g(x)tx.\frac{f(g(t)) - f(g(x))}{t - x} = \frac{(f(g(t)) - f(g(x)))}{g(t) - g(x)} \cdot \frac{g(t) - g(x)}{t - x}. Let’s substitute: =(f(g(x))+v(g(t)))(g(x)+u(t)).= \left( f'(g(x)) + v(g(t)) \right) \cdot \left( g'(x) + u(t) \right).

  4. Expand and Simplify:
    Expanding this product, =f(g(x))g(x)+f(g(x))u(t)+g(x)v(g(t))+v(g(t))u(t).= f'(g(x)) g'(x) + f'(g(x)) u(t) + g'(x) v(g(t)) + v(g(t)) u(t). Therefore, f(g(t))f(g(x))txf(g(x))g(x)=f(g(x))u(t)+g(x)v(g(t))+v(g(t))u(t).\frac{f(g(t)) - f(g(x))}{t - x} - f'(g(x)) g'(x) = f'(g(x)) u(t) + g'(x) v(g(t)) + v(g(t)) u(t).

  5. Apply the Given Bounds:
    We know:

    • u(t)tx2|u(t)| \leq |t - x|^2.
    • v(g(t))3g(t)g(x)|v(g(t))| \leq 3 |g(t) - g(x)|.
    • g(t)g(x)tx3|g(t) - g(x)| \leq |t - x|^3.

    Using these bounds:

    • f(g(x))u(t)4tx2|f'(g(x)) u(t)| \leq 4 |t - x|^2.
    • g(x)v(g(t))23tx3=6tx3|g'(x) v(g(t))| \leq 2 \cdot 3 |t - x|^3 = 6 |t - x|^3.
    • v(g(t))u(t)3tx3tx2=3tx5|v(g(t)) u(t)| \leq 3 |t - x|^3 \cdot |t - x|^2 = 3 |t - x|^5.
  6. Combine the Results:
    Summing these, we get: f(g(t))f(g(x))txf(g(x))g(x)4tx2+6tx3+3tx5.\left| \frac{f(g(t)) - f(g(x))}{t - x} - f'(g(x)) g'(x) \right| \leq 4 |t - x|^2 + 6 |t - x|^3 + 3 |t - x|^5. For tx0.1|t - x| \leq 0.1, higher powers of tx|t - x| (like tx3|t - x|^3 and tx5|t - x|^5) become very small, so the dominant term here is 4tx24 |t - x|^2.

Final Result:

f(g(t))f(g(x))txf(g(x))g(x)4tx2+6tx3+3tx5.\left| \frac{f(g(t)) - f(g(x))}{t - x} - f'(g(x)) g'(x) \right| \leq 4 |t - x|^2 + 6 |t - x|^3 + 3 |t - x|^5.

Thus, for small tx0.1|t - x| \leq 0.1, we can approximate:

f(g(t))f(g(x))txf(g(x))g(x)4tx2.\left| \frac{f(g(t)) - f(g(x))}{t - x} - f'(g(x)) g'(x) \right| \approx 4 |t - x|^2.

Would you like further clarification on any part of this solution?

Related Questions to Explore:

  1. What would happen if f(g(x))f'(g(x)) or g(x)g'(x) were zero?
  2. How would the result change if we altered the bounds on u(t)u(t) or v(s)v(s)?
  3. Can we extend this method to other compositions of differentiable functions?
  4. What is the significance of each term in the expansion in Step 4?
  5. How does this result relate to the precise definition of the chain rule?

Tip:

In approximation problems, identifying the dominant term helps simplify analysis, especially when dealing with higher-order small quantities.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Differentiation
Chain Rule
Function Limits

Formulas

u(t) = (g(t) - g(x)) / (t - x) - g'(x) if t ≠ x, 0 if t = x
v(s) = (f(s) - f(g(x))) / (s - g(x)) - f'(g(x)) if s ≠ g(x), 0 if s = g(x)
|f(g(t)) - f(g(x)) / (t - x) - f'(g(x))g'(x)|

Theorems

Chain Rule

Suitable Grade Level

Undergraduate Calculus