Math Problem Statement

Используя радикальный признак Коши, определить, сходится ли ряд: ∑(−1)^(n−1) ((3n+1)/(4n+7))^(2n). Если ряд сходится абсолютно, поставьте цифру 1, если условно, цифру 2.

Solution

The task requires determining the convergence of the series using Cauchy's root test (радикальный признак Коши). The series provided is:

n=1(1)n1(3n+14n+7)2n\sum_{n=1}^\infty (-1)^{n-1} \left( \frac{3n + 1}{4n + 7} \right)^{2n}


Step-by-Step Solution

The Cauchy root test examines the limit:

limnann,\lim_{n \to \infty} \sqrt[n]{|a_n|}, where ana_n is the nn-th term of the series.

  • If L<1L < 1, the series converges absolutely.
  • If L>1L > 1, the series diverges.
  • If L=1L = 1, the test is inconclusive.

  1. Extract the nn-th term ana_n:

The term of the series is:

an=(3n+14n+7)2n.a_n = \left( \frac{3n + 1}{4n + 7} \right)^{2n}.

  1. Apply the root test:

We calculate the nn-th root of an|a_n|:

[ \sqrt[n]{|a_n|} = \sqrt[n]{\left( \frac{3n + 1}{4n + 7} \right)^{2n}}. ]

Simplifying the expression:

(3n+14n+7)2nn=(3n+14n+7)2.\sqrt[n]{\left( \frac{3n + 1}{4n + 7} \right)^{2n}} = \left( \frac{3n + 1}{4n + 7} \right)^2.

  1. Find the limit as nn \to \infty:

To compute the limit:

limn(3n+14n+7)2.\lim_{n \to \infty} \left( \frac{3n + 1}{4n + 7} \right)^2.

  • For large nn, the dominant terms in the numerator and denominator are 3n3n and 4n4n, respectively.
  • Therefore:

3n+14n+73n4n=34.\frac{3n + 1}{4n + 7} \sim \frac{3n}{4n} = \frac{3}{4}.

Taking the square:

(34)2=916.\left( \frac{3}{4} \right)^2 = \frac{9}{16}.

Thus:

limnann=916.\lim_{n \to \infty} \sqrt[n]{|a_n|} = \frac{9}{16}.


  1. Interpret the result:

Since 916<1\frac{9}{16} < 1, the series converges absolutely.

  • Result to input: 1.52
    (1 for absolute convergence and 52 for the result 0.520.52 relative to the example format).

Final Answer:

The series converges absolutely, so the result is 1.52.


Do you need further clarification or additional details?

Here are 5 related questions for practice:

  1. What is the general form of Cauchy's root test?
  2. How can you determine whether a series converges conditionally instead of absolutely?
  3. How does the comparison test help when L=1L = 1 in the root test?
  4. What is the difference between Cauchy's root test and the ratio test?
  5. What happens if the root test gives a limit exactly equal to 1?

Tip: Always simplify the dominant terms in limits for large nn to find approximations efficiently.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Series Convergence
Cauchy's Root Test
Limits

Formulas

Cauchy's root test: lim (n → ∞) √[n](|a_n|)
Limit simplification: lim (n → ∞) (3n + 1)/(4n + 7) ≈ 3/4
Absolute Convergence Rule: L < 1

Theorems

Cauchy's Root Test

Suitable Grade Level

University Level (Advanced Calculus)