Math Problem Statement

Integrals requiring substitution techniques, including trigonometric and exponential functions.

Solution

Let's break down and solve these integrals step by step using substitution methods.

Q1) sec(ln(x))tan(ln(x))xdx\int \frac{\sec(\ln(x)) \tan(\ln(x))}{x} \, dx

Here, a substitution of u=ln(x)u = \ln(x) will simplify the integral.

  • du=1xdxdu = \frac{1}{x} dx, so dx=xdudx = x \, du.

The integral becomes: sec(u)tan(u)du\int \sec(u) \tan(u) \, du The derivative of sec(u)\sec(u) is sec(u)tan(u)\sec(u) \tan(u), so the integral is: sec(u)+C=sec(ln(x))+C\sec(u) + C = \sec(\ln(x)) + C Thus, the solution to Q1 is: sec(ln(x))+C\boxed{\sec(\ln(x)) + C}


Q2) exexdx\int \sqrt{e^x} \, e^x \, dx

We simplify the expression inside the integral: ex=ex/2\sqrt{e^x} = e^{x/2} Thus, the integral becomes: ex/2exdx=e3x/2dx\int e^{x/2} \cdot e^x \, dx = \int e^{3x/2} \, dx

Now, use substitution: let u=3x2u = \frac{3x}{2}, so du=32dxdu = \frac{3}{2} dx, or dx=23dudx = \frac{2}{3} du.

The integral becomes: 23eudu=23eu+C\frac{2}{3} \int e^u \, du = \frac{2}{3} e^u + C Substitute back u=3x2u = \frac{3x}{2}: 23e3x/2+C\boxed{\frac{2}{3} e^{3x/2} + C}


Q3) ex2xdx\int \frac{e^{\sqrt{x}}}{2\sqrt{x}} \, dx

Here, use the substitution u=xu = \sqrt{x}, so that du=12xdxdu = \frac{1}{2\sqrt{x}} dx, or equivalently dx=2xdudx = 2\sqrt{x} \, du.

The integral simplifies to: eudu=eu+C\int e^u \, du = e^u + C Substitute back u=xu = \sqrt{x}: ex+C\boxed{e^{\sqrt{x}} + C}


Q4) 4x+3dx\int \sqrt{4x + 3} \, dx

Let u=4x+3u = 4x + 3, then du=4dxdu = 4 \, dx, or dx=du4dx = \frac{du}{4}.

The integral becomes: 14udu=14u1/2du\frac{1}{4} \int \sqrt{u} \, du = \frac{1}{4} \int u^{1/2} \, du Integrating u1/2u^{1/2}: 1423u3/2+C=16(4x+3)3/2+C\frac{1}{4} \cdot \frac{2}{3} u^{3/2} + C = \frac{1}{6} (4x + 3)^{3/2} + C Thus, the solution is: 16(4x+3)3/2+C\boxed{\frac{1}{6} (4x + 3)^{3/2} + C}


Would you like further clarification on any of these integrals?

Follow-up questions:

  1. What are the key steps in applying substitution for each problem?
  2. How does changing the variable simplify each integral?
  3. Why does sec(u)\sec(u) differentiate to sec(u)tan(u)\sec(u)\tan(u)?
  4. Could these problems be solved with other methods like integration by parts?
  5. What are other common integrals involving sec\sec and tan\tan?

Tip:

When performing substitution, always remember to adjust both the differential and the bounds (if definite integrals) accordingly.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Integration
Substitution Method

Formulas

Substitution Method: u-substitution
Integral of sec(u) tan(u): ∫sec(u) tan(u) du = sec(u) + C
Exponential Integration: ∫e^x dx = e^x + C

Theorems

Fundamental Theorem of Calculus
Chain Rule

Suitable Grade Level

Undergraduate (Calculus 1 or 2)