Math Problem Statement

Choose the correct answer

Using the American method: ∫ 2x² cos(2x) dx = Choose the correct answer.

Solution

To solve the integral 2x2cos(2x)dx\int 2x^2 \cos(2x) \, dx using integration by parts, let's proceed by setting it up appropriately.

Step 1: Set up for Integration by Parts

Using the integration by parts formula: udv=uvvdu\int u \, dv = uv - \int v \, du we can choose:

  • u=x2u = x^2 and dv=2cos(2x)dxdv = 2\cos(2x) \, dx.

Then:

  • du=2xdxdu = 2x \, dx
  • v=2cos(2x)dx=sin(2x)v = \int 2\cos(2x) \, dx = \sin(2x)

Step 2: Apply Integration by Parts

Now, substitute these into the formula: 2x2cos(2x)dx=x2sin(2x)sin(2x)2xdx\int 2x^2 \cos(2x) \, dx = x^2 \sin(2x) - \int \sin(2x) \cdot 2x \, dx

Step 3: Repeat Integration by Parts on the Remaining Integral

Now we need to integrate 2xsin(2x)dx\int 2x \sin(2x) \, dx by parts again. Choose:

  • u=xu = x and dv=2sin(2x)dxdv = 2\sin(2x) \, dx

Then:

  • du=dxdu = dx
  • v=cos(2x)v = -\cos(2x)

So: 2xsin(2x)dx=xcos(2x)+cos(2x)dx\int 2x \sin(2x) \, dx = -x \cos(2x) + \int \cos(2x) \, dx =xcos(2x)+12sin(2x)= -x \cos(2x) + \frac{1}{2} \sin(2x)

Step 4: Combine Results

Substitute back: 2x2cos(2x)dx=x2sin(2x)(xcos(2x)+12sin(2x))\int 2x^2 \cos(2x) \, dx = x^2 \sin(2x) - \left(-x \cos(2x) + \frac{1}{2} \sin(2x)\right) =x2sin(2x)+xcos(2x)12sin(2x)+C= x^2 \sin(2x) + x \cos(2x) - \frac{1}{2} \sin(2x) + C

Step 5: Match with the Options

The correct answer should be: (x212)sin(2x)+xcos(2x)+C\left(x^2 - \frac{1}{2}\right) \sin(2x) + x \cos(2x) + C This corresponds to the first option:

(x212)sin(2x)+xcos(2x)+C\left(x^2 - \frac{1}{2}\right) \sin(2x) + x \cos(2x) + C

Let me know if you'd like more details, or have any questions about the solution.


Further questions you may find interesting:

  1. How would the answer change if the integrand was 3x2cos(3x)3x^2 \cos(3x) instead of 2x2cos(2x)2x^2 \cos(2x)?
  2. Can this integral be evaluated using any trigonometric identities for simplification?
  3. What alternative integration techniques could be used for this integral?
  4. How would we handle this integral if 2x22x^2 was replaced by a more complex function of xx?
  5. Can you compute the definite integral from 00 to π\pi of 2x2cos(2x)2x^2 \cos(2x)?

Tip: When applying integration by parts, carefully choose uu and dvdv to simplify the resulting integral.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integration by Parts
Trigonometric Integration
Calculus

Formulas

Integration by Parts: ∫ u dv = uv - ∫ v du
Trigonometric integral of cos(2x)

Theorems

Integration by Parts

Suitable Grade Level

Grades 11-12