Math Problem Statement

In french for 2bac pc

Solve mathematical exercises in French as shown in the provided image.

Solution

The image contains mathematical exercises in French focusing on calculus and analysis. I'll help you by solving one or more parts of the exercises systematically and providing detailed explanations for each step. Let's begin!

Exercise I:

1. a) Montrer que : g'(x) = (x + 1)/x pour tout x de I.

The function given is:

g(x)=x1+lnxg(x) = x - 1 + \ln x

To compute g(x)g'(x), differentiate each term:

  • Derivative of xx: 11
  • Derivative of 1-1: 00
  • Derivative of lnx\ln x: 1/x1/x

Thus: g(x)=1+1x=x+1xg'(x) = 1 + \frac{1}{x} = \frac{x + 1}{x}

Conclusion: g(x)=x+1xg'(x) = \frac{x + 1}{x}, which holds for all xIx \in I.


1. b) Montrer que la fonction gg est croissante sur II.

A function is increasing on an interval if its derivative is positive. From the previous result: g(x)=x+1xg'(x) = \frac{x + 1}{x}

For x>0x > 0:

  • x+1>0x + 1 > 0 and x>0x > 0, so g(x)>0g'(x) > 0.

Conclusion: g(x)g(x) is strictly increasing on I=]0;+[I = ]0; +\infty[.


2. En déduire que g(x)0g(x) \geq 0 sur [1;+[[1; +\infty[ et g(x)0g(x) \leq 0 sur ]0;1]]0; 1].

  • Since gg is increasing on ]0;+[]0; +\infty[, its value at x=1x = 1 gives the boundary condition. Compute g(1)g(1): g(1)=11+ln(1)=0g(1) = 1 - 1 + \ln(1) = 0

  • For x>1x > 1, g(x)>g(1)=0g(x) > g(1) = 0, so g(x)0g(x) \geq 0 on [1;+[[1; +\infty[.

  • For 0<x<10 < x < 1, g(x)<g(1)=0g(x) < g(1) = 0, so g(x)0g(x) \leq 0 on ]0;1]]0; 1].


Exercise II:

1. a) Montrer que limx0+f(x)=+\lim_{x \to 0^+} f(x) = +\infty et donner une interprétation géométrique.

The function is: f(x)=(x1x)lnxf(x) = \left( \frac{x - 1}{x} \right) \ln x

Rewrite f(x)f(x): f(x)=(11x)lnxf(x) = \left( 1 - \frac{1}{x} \right) \ln x

Analyze lnx\ln x and 1/x1/x as x0+x \to 0^+:

  • lnx\ln x \to -\infty
  • 1x-\frac{1}{x} \to -\infty

Thus, f(x)+f(x) \to +\infty because lnx\ln x dominates near 0.

Interpretation: As x0+x \to 0^+, the curve CC rises steeply toward ++\infty.


1. b) Montrer que limx+f(x)=+\lim_{x \to +\infty} f(x) = +\infty et limx+f(x)x=0\lim_{x \to +\infty} \frac{f(x)}{x} = 0.

To compute limx+f(x)\lim_{x \to +\infty} f(x):

  • As x+x \to +\infty, lnx+\ln x \to +\infty.
  • Since x1x=11x1\frac{x - 1}{x} = 1 - \frac{1}{x} \to 1, f(x)+f(x) \to +\infty.

To compute limx+f(x)x\lim_{x \to +\infty} \frac{f(x)}{x}: f(x)x=(x1)lnxx2=lnxxlnxx2\frac{f(x)}{x} = \frac{(x - 1)\ln x}{x^2} = \frac{\ln x}{x} - \frac{\ln x}{x^2}

  • Both terms lnxx\frac{\ln x}{x} and lnxx20\frac{\ln x}{x^2} \to 0 as x+x \to +\infty.

Thus: limx+f(x)x=0\lim_{x \to +\infty} \frac{f(x)}{x} = 0


Let me know if you would like me to solve part II.2 or provide more details!

Relative Questions:

  1. Why is g(x)>0g'(x) > 0 sufficient to prove g(x)g(x) is increasing?
  2. Can g(x)g(x) be negative for x>1x > 1? Why or why not?
  3. What does the interpretation of limx0+f(x)=+\lim_{x \to 0^+} f(x) = +\infty mean geometrically?
  4. How does lnx\ln x's growth compare to polynomials as x+x \to +\infty?
  5. Why does lnxx20\frac{\ln x}{x^2} \to 0 faster than lnxx\frac{\ln x}{x}?

Tip: For limits involving lnx\ln x,

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Differentiation
Limits and asymptotic behavior
Monotonicity
Behavior of logarithmic functions
Branch analysis of functions

Formulas

g'(x) = (x + 1) / x
f(x) = [(x - 1) / x] * ln(x)
Derivative of ln(x): 1/x
Limit properties: lim (ln x) as x -> 0+ and x -> infinity

Theorems

Monotonicity theorem based on derivative sign
Asymptotic analysis
Limit rules for infinity

Suitable Grade Level

Grade 12 (Terminale Scientifique / Pre-university level)