Math Problem Statement

Can you give me an example of how to calculate eigenvalues from a 3 by 3 matrix?

Solution

To calculate the eigenvalues of a 3x3 matrix, we follow a systematic procedure. Let’s go through an example:

Step-by-Step Example:

Given the matrix AA:

4 & 1 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$ 1. **Write the characteristic equation**: The eigenvalues of matrix $$A$$ are the solutions to the characteristic equation: $$\det(A - \lambda I) = 0$$ where $$I$$ is the identity matrix, and $$\lambda$$ represents the eigenvalue. The matrix $$A - \lambda I$$ subtracts $$\lambda$$ from the diagonal entries of $$A$$: $$A - \lambda I = \begin{bmatrix} 4-\lambda & 1 & 1 \\ 2 & 3-\lambda & 1 \\ 1 & 1 & 2-\lambda \end{bmatrix}$$ 2. **Find the determinant of $$A - \lambda I$$**: The next step is to compute the determinant of $$A - \lambda I$$: $$\det(A - \lambda I) = \det \begin{bmatrix} 4-\lambda & 1 & 1 \\ 2 & 3-\lambda & 1 \\ 1 & 1 & 2-\lambda \end{bmatrix}$$ Using cofactor expansion along the first row: $$\det(A - \lambda I) = (4-\lambda) \det \begin{bmatrix} 3-\lambda & 1 \\ 1 & 2-\lambda \end{bmatrix} - 1 \cdot \det \begin{bmatrix} 2 & 1 \\ 1 & 2-\lambda \end{bmatrix} + 1 \cdot \det \begin{bmatrix} 2 & 3-\lambda \\ 1 & 1 \end{bmatrix}$$ 3. **Calculate the 2x2 determinants**: Let's calculate the 2x2 determinants: $$\det \begin{bmatrix} 3-\lambda & 1 \\ 1 & 2-\lambda \end{bmatrix} = (3-\lambda)(2-\lambda) - 1 \cdot 1 = \lambda^2 - 5\lambda + 5$$ $$\det \begin{bmatrix} 2 & 1 \\ 1 & 2-\lambda \end{bmatrix} = 2(2-\lambda) - 1 \cdot 1 = 4 - 2\lambda - 1 = 3 - 2\lambda$$ $$\det \begin{bmatrix} 2 & 3-\lambda \\ 1 & 1 \end{bmatrix} = 2(1) - (3-\lambda) \cdot 1 = 2 - 3 + \lambda = \lambda - 1$$ 4. **Substitute these into the determinant expression**: Now we substitute back into the expansion: $$\det(A - \lambda I) = (4-\lambda)(\lambda^2 - 5\lambda + 5) - (3 - 2\lambda) + (\lambda - 1)$$ 5. **Simplify the characteristic equation**: Expand and simplify: $$= (4-\lambda)(\lambda^2 - 5\lambda + 5) - 3 + 2\lambda + \lambda - 1$$ $$= (4\lambda^2 - 20\lambda + 20 - \lambda^3 + 5\lambda^2 - 5\lambda) - 4 + 3\lambda$$ $$= -\lambda^3 + 9\lambda^2 - 22\lambda + 16$$ 6. **Solve for the eigenvalues**: The characteristic equation is: $$-\lambda^3 + 9\lambda^2 - 22\lambda + 16 = 0$$ Solve this cubic equation to find the eigenvalues. By trial or using a solver, we find that the eigenvalues are: $$\lambda_1 = 4, \quad \lambda_2 = 2, \quad \lambda_3 = 1$$ ### Final Eigenvalues: The eigenvalues of the matrix $$A$$ are: $$\lambda_1 = 4, \quad \lambda_2 = 2, \quad \lambda_3 = 1$$ --- Would you like further details or clarification on any of the steps? Here are 5 related questions to expand on this topic: 1. How can you calculate eigenvectors for the same matrix? 2. How are eigenvalues used in applications like physics or engineering? 3. How does the determinant of a matrix relate to its eigenvalues? 4. Can you explain the geometric interpretation of eigenvalues? 5. How do the properties of symmetric matrices affect their eigenvalues? **Tip**: For larger matrices or complex eigenvalue problems, numerical methods like QR algorithm or power iteration are often used.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Eigenvalues
Matrices

Formulas

Characteristic equation: det(A - λI) = 0
Determinant of a 3x3 matrix
Cubic equation solution for eigenvalues

Theorems

Eigenvalue theorem
Determinant properties

Suitable Grade Level

Undergraduate Mathematics