Math Problem Statement

Use the information about values of the functions and their derivatives to calculate 𝐻′(7),Hβ€²(7), where 𝐻(π‘₯)=π‘₯𝑔(π‘₯)𝑓(π‘₯).H(x)=xg(x)f(x).

𝑓(7)f(7)

𝑓′(7)fβ€²(7)

𝑔(7)g(7)

𝑔′(7)gβ€²(7)

33

βˆ’5βˆ’5

77

βˆ’4βˆ’4

(Give an exact answer. Use symbolic notation and fractions where needed.)

Solution

We are asked to find Hβ€²(7)H'(7), where H(x)=xg(x)f(x)H(x) = x g(x) f(x).

We are given the following information:

f(7)=33,fβ€²(7)=βˆ’5,g(7)=7,gβ€²(7)=βˆ’4f(7) = 33, \quad f'(7) = -5, \quad g(7) = 7, \quad g'(7) = -4

Step 1: Apply the Product Rule

Since H(x)=xg(x)f(x)H(x) = x g(x) f(x), we need to differentiate this product of three functions. We'll use the product rule.

The derivative of H(x)=xg(x)f(x)H(x) = x g(x) f(x) can be computed as:

Hβ€²(x)=ddx(xg(x)f(x))H'(x) = \frac{d}{dx} \left( x g(x) f(x) \right)

We apply the product rule:

Hβ€²(x)=ddx(x)β‹…g(x)f(x)+xβ‹…ddx(g(x)f(x))H'(x) = \frac{d}{dx}(x) \cdot g(x) f(x) + x \cdot \frac{d}{dx}(g(x) f(x))

First, the derivative of xx is 1, so:

Hβ€²(x)=g(x)f(x)+xβ‹…ddx(g(x)f(x))H'(x) = g(x) f(x) + x \cdot \frac{d}{dx}(g(x) f(x))

Now, apply the product rule again to g(x)f(x)g(x) f(x):

ddx(g(x)f(x))=gβ€²(x)f(x)+g(x)fβ€²(x)\frac{d}{dx}(g(x) f(x)) = g'(x) f(x) + g(x) f'(x)

Thus,

Hβ€²(x)=g(x)f(x)+xβ‹…(gβ€²(x)f(x)+g(x)fβ€²(x))H'(x) = g(x) f(x) + x \cdot \left( g'(x) f(x) + g(x) f'(x) \right)

Step 2: Substitute the values at x=7x = 7

Now substitute the given values f(7)=33f(7) = 33, fβ€²(7)=βˆ’5f'(7) = -5, g(7)=7g(7) = 7, and gβ€²(7)=βˆ’4g'(7) = -4 into the expression:

Hβ€²(7)=g(7)f(7)+7β‹…(gβ€²(7)f(7)+g(7)fβ€²(7))H'(7) = g(7) f(7) + 7 \cdot \left( g'(7) f(7) + g(7) f'(7) \right)

Substitute the values:

Hβ€²(7)=7β‹…33+7β‹…((βˆ’4)β‹…33+7β‹…(βˆ’5))H'(7) = 7 \cdot 33 + 7 \cdot \left( (-4) \cdot 33 + 7 \cdot (-5) \right)

Step 3: Simplify the expression

First, calculate the individual parts:

7β‹…33=2317 \cdot 33 = 231 (βˆ’4)β‹…33=βˆ’132(-4) \cdot 33 = -132 7β‹…(βˆ’5)=βˆ’357 \cdot (-5) = -35

Now sum the terms inside the parentheses:

βˆ’132+(βˆ’35)=βˆ’167-132 + (-35) = -167

Multiply by 7:

7β‹…(βˆ’167)=βˆ’11697 \cdot (-167) = -1169

Finally, add to the first term:

Hβ€²(7)=231+(βˆ’1169)=βˆ’938H'(7) = 231 + (-1169) = -938

Final Answer:

Hβ€²(7)=βˆ’938H'(7) = -938

Would you like further clarification on any step, or should I break down any details further?

Here are 5 related questions:

  1. How does the product rule work for three functions?
  2. Can the chain rule be applied in cases like this?
  3. What are common mistakes to avoid when using the product rule?
  4. How can this problem be solved using Leibniz's notation for differentiation?
  5. How does this method extend to implicit differentiation problems?

Tip: Always double-check your arithmetic when applying the product rule to avoid simple mistakes.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Product Rule
Differentiation

Formulas

H'(x) = g(x) f(x) + x * (g'(x) f(x) + g(x) f'(x))
Product Rule: (uv)' = u'v + uv'

Theorems

Product Rule

Suitable Grade Level

Grades 11-12