Math Problem Statement

Вычислить модуль векторного произведения векторов |a x b|, если |a| = 3, |b| = 20, (a, b) = 30.

Solution

To calculate the magnitude of the vector cross product a×b|\vec{a} \times \vec{b}|, we use the formula:

a×b=absinθ|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin\theta

Here:

  • a|\vec{a}| is the magnitude of vector a\vec{a},
  • b|\vec{b}| is the magnitude of vector b\vec{b},
  • θ\theta is the angle between the vectors.

From the given data: a=3,b=20,cosθ=30|\vec{a}| = 3, \quad |\vec{b}| = 20, \quad \cos\theta = 30

We calculate sinθ\sin\theta using the Pythagorean identity: sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1 sinθ=1cos2θ\sin\theta = \sqrt{1 - \cos^2\theta}

Substituting cosθ=30\cos\theta = 30: sinθ=1(30)2\sin\theta = \sqrt{1 - (30)^2}

However, this value for cosθ\cos\theta appears too large for a valid cosine (since cosθ1|\cos\theta| \leq 1). Could you clarify the problem or confirm the given value?

Let me know,

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Cross Product
Trigonometry

Formulas

|a × b| = |a| * |b| * sin(θ)
sin²(θ) + cos²(θ) = 1

Theorems

Pythagorean Identity

Suitable Grade Level

Grades 10-12