Math Problem Statement

After completing one revolution starting from the initial line, point A is observed to have coordinates (-\frac{ \sqrt{3} }{2} , \frac{1}{2}) on the unit circle. Using that information, please answer the following questions:

Calculate all 6 values of the trigonometric functions (clearly state the formulae used to calculate these functions).

Solution

Given that point AA on the unit circle has coordinates (32,12)\left( -\frac{\sqrt{3}}{2}, \frac{1}{2} \right), we can calculate the six trigonometric functions as follows:

  1. Sine (sin\sin): sin(θ)=y\sin(\theta) = y sin(θ)=12\sin(\theta) = \frac{1}{2}

  2. Cosine (cos\cos): cos(θ)=x\cos(\theta) = x cos(θ)=32\cos(\theta) = -\frac{\sqrt{3}}{2}

  3. Tangent (tan\tan): tan(θ)=yx\tan(\theta) = \frac{y}{x} tan(θ)=1232=13=33\tan(\theta) = \frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}

  4. Cosecant (csc\csc): csc(θ)=1y\csc(\theta) = \frac{1}{y} csc(θ)=112=2\csc(\theta) = \frac{1}{\frac{1}{2}} = 2

  5. Secant (sec\sec): sec(θ)=1x\sec(\theta) = \frac{1}{x} sec(θ)=132=23=233\sec(\theta) = \frac{1}{-\frac{\sqrt{3}}{2}} = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}

  6. Cotangent (cot\cot): cot(θ)=xy\cot(\theta) = \frac{x}{y} cot(θ)=3212=3\cot(\theta) = \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\sqrt{3}

Summarizing the values of the trigonometric functions:

  1. sin(θ)=12\sin(\theta) = \frac{1}{2}
  2. cos(θ)=32\cos(\theta) = -\frac{\sqrt{3}}{2}
  3. tan(θ)=33\tan(\theta) = -\frac{\sqrt{3}}{3}
  4. csc(θ)=2\csc(\theta) = 2
  5. sec(θ)=233\sec(\theta) = -\frac{2\sqrt{3}}{3}
  6. cot(θ)=3\cot(\theta) = -\sqrt{3}

Would you like more details or have any questions?

Relative Questions:

  1. What are the coordinates of point AA if it is at π6\frac{\pi}{6} radians?
  2. How do the trigonometric functions change if point AA is at 5π6\frac{5\pi}{6} radians?
  3. What are the values of the trigonometric functions for point AA at 7π6\frac{7\pi}{6} radians?
  4. Explain the behavior of sec(θ)\sec(\theta) and csc(θ)\csc(\theta) for point AA on the unit circle.
  5. What are the six trigonometric function values for a point BB at π4\frac{\pi}{4} radians?
  6. How do you determine the angle θ\theta corresponding to the given coordinates on the unit circle?
  7. What is the significance of the signs of the trigonometric functions in different quadrants?
  8. How can you use the unit circle to find the values of trigonometric functions for negative angles?

Tip:

When working with trigonometric functions, it's helpful to remember that each function's value is tied to a specific coordinate pair on the unit circle. Knowing the coordinates makes it straightforward to compute the function values.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Unit Circle
Trigonometric Functions

Formulas

Sine function: \( \sin(\theta) = y \)
Cosine function: \( \cos(\theta) = x \)
Tangent function: \( \tan(\theta) = \frac{y}{x} \)
Cosecant function: \( \csc(\theta) = \frac{1}{y} \)
Secant function: \( \sec(\theta) = \frac{1}{x} \)
Cotangent function: \( \cot(\theta) = \frac{x}{y} \)

Theorems

-

Suitable Grade Level

Advanced High School