Math Problem Statement

Using the sine rule, calculate the length d. Give your answer to 2 decimal places.

Solution

To calculate the length dd using the sine rule, we can apply:

asinA=bsinB=csinC\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}

Here, we have:

  • a=da = d, A=42A = 42^\circ
  • b=36.5mb = 36.5 \, \text{m}, B=67B = 67^\circ

Applying the sine rule:

dsin42=36.5sin67\frac{d}{\sin 42^\circ} = \frac{36.5}{\sin 67^\circ}

Solving for dd:

d=36.5sin42sin67d = \frac{36.5 \cdot \sin 42^\circ}{\sin 67^\circ}

Calculate this using a calculator:

  1. sin420.6691\sin 42^\circ \approx 0.6691
  2. sin670.9205\sin 67^\circ \approx 0.9205

d=36.5×0.66910.920524.429150.920526.54md = \frac{36.5 \times 0.6691}{0.9205} \approx \frac{24.42915}{0.9205} \approx 26.54 \, \text{m}

So, the length dd is approximately 26.54m26.54 \, \text{m} to 2 decimal places.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Trigonometry
Sine Rule
Triangle Geometry

Formulas

(a/sin A) = (b/sin B) = (c/sin C)

Theorems

Sine Rule

Suitable Grade Level

Grades 10-12