Math Problem Statement

Find the total area of the above picture

Find the total area of the quadrilateral ABCD with sides AB = 65.8 meters, BC = 66.6 meters, CD = 32.8 meters, DA = 64.4 meters, and diagonals AC = 94.1 meters and BD = 102.6 meters.

Solution

To find the total area of quadrilateral ABCDABCD in the image, we can split it into two triangles, ABC\triangle ABC and ACD\triangle ACD, using diagonal ACAC or BDBD. We can then find the area of each triangle individually and add them together.

Given Information:

  • AB=65.8metersAB = 65.8 \, \text{meters}
  • BC=66.6metersBC = 66.6 \, \text{meters}
  • CD=32.8metersCD = 32.8 \, \text{meters}
  • DA=64.4metersDA = 64.4 \, \text{meters}
  • AC=94.1metersAC = 94.1 \, \text{meters}
  • BD=102.6metersBD = 102.6 \, \text{meters}

Solution Steps:

  1. Divide the Quadrilateral: We can divide quadrilateral ABCDABCD into two triangles by diagonal ACAC: ABC\triangle ABC and ACD\triangle ACD.

  2. Area of ABC\triangle ABC: We know the side lengths ABAB, BCBC, and ACAC. We can use Heron's formula to find the area of ABC\triangle ABC.

    • Calculate Semi-Perimeter ss for ABC\triangle ABC: s=AB+BC+AC2=65.8+66.6+94.12=113.25meterss = \frac{AB + BC + AC}{2} = \frac{65.8 + 66.6 + 94.1}{2} = 113.25 \, \text{meters}
    • Apply Heron's Formula: AreaABC=s(sAB)(sBC)(sAC)\text{Area}_{ABC} = \sqrt{s \cdot (s - AB) \cdot (s - BC) \cdot (s - AC)} =113.25(113.2565.8)(113.2566.6)(113.2594.1)= \sqrt{113.25 \cdot (113.25 - 65.8) \cdot (113.25 - 66.6) \cdot (113.25 - 94.1)}
  3. Area of ACD\triangle ACD: Similarly, we use side lengths ADAD, CDCD, and ACAC with Heron's formula.

    • Calculate Semi-Perimeter ss for ACD\triangle ACD: s=AD+CD+AC2=64.4+32.8+94.12=95.65meterss = \frac{AD + CD + AC}{2} = \frac{64.4 + 32.8 + 94.1}{2} = 95.65 \, \text{meters}
    • Apply Heron's Formula: AreaACD=s(sAD)(sCD)(sAC)\text{Area}_{ACD} = \sqrt{s \cdot (s - AD) \cdot (s - CD) \cdot (s - AC)} =95.65(95.6564.4)(95.6532.8)(95.6594.1)= \sqrt{95.65 \cdot (95.65 - 64.4) \cdot (95.65 - 32.8) \cdot (95.65 - 94.1)}
  4. Total Area of Quadrilateral ABCDABCD: Total Area=AreaABC+AreaACD\text{Total Area} = \text{Area}_{ABC} + \text{Area}_{ACD}

Let me calculate each part.The areas of the triangles and the total area of quadrilateral ABCDABCD are as follows:

  1. Area of ABC\triangle ABC: 2191.03square meters2191.03 \, \text{square meters}
  2. Area of ACD\triangle ACD: 539.62square meters539.62 \, \text{square meters}
  3. Total Area of ABCDABCD: 2730.64square meters2730.64 \, \text{square meters}

Would you like a breakdown of the calculations, or do you have any other questions?

Related Questions:

  1. How would the area change if diagonal BDBD was used to divide ABCDABCD?
  2. What other methods, besides Heron's formula, could we use to find the area of a quadrilateral?
  3. How can we verify the accuracy of the measurements for complex shapes?
  4. What are the conditions for using Heron's formula effectively?
  5. Could we apply the cosine rule to determine any angles in this quadrilateral?

Tip:

When calculating areas of polygons, dividing them into triangles is a helpful strategy, especially when side lengths or diagonals are given.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Area of Quadrilaterals
Heron's Formula

Formulas

Heron's Formula: Area = √(s * (s - a) * (s - b) * (s - c)) where s = (a + b + c) / 2
Total Area of Quadrilateral ABCD = Area of Triangle ABC + Area of Triangle ACD

Theorems

Heron's Formula

Suitable Grade Level

Grades 10-12