Math Problem Statement

Dos ruedas, en un cierto instante, giran a razón de 120 r.p.m. y 240 r.p.m., siendo sus radios de 20 cm y 40 cm respectivamente. A cada una se le aplica un freno y se detiene la menor en 16 s y la mayor en 8 s, ambas con movimiento uniformemente desacelerado. ¿En qué instante tienen ambas ruedas la misma velocidad angular? ¿En ese momento, cuántas vueltas dio cada una de las ruedas?

Solution

The problem states:

Two wheels, at a certain instant, rotate at 120 r.p.m. and 240 r.p.m., with radii of 20 cm and 40 cm, respectively. A brake is applied to each wheel, with the smaller one stopping in 16 seconds and the larger one in 8 seconds, both decelerating uniformly. We are asked:

  1. At what instant do both wheels have the same angular velocity?
  2. At that moment, how many rotations has each wheel completed?

Solution Steps:

  1. Convert initial speeds to radians per second:

    • Smaller wheel: 120 r.p.m. = 120×2π60\frac{120 \times 2\pi}{60} rad/s = 4π4\pi rad/s.
    • Larger wheel: 240 r.p.m. = 240×2π60\frac{240 \times 2\pi}{60} rad/s = 8π8\pi rad/s.
  2. Calculate the angular deceleration:

    • For the smaller wheel: Initial angular velocity (ω0\omega_0) = 4π4\pi rad/s, final velocity = 0 rad/s, time = 16 s. αsmall=ω0ωt=4π16=π4rad/s2\alpha_{\text{small}} = \frac{\omega_0 - \omega}{t} = \frac{4\pi}{16} = \frac{\pi}{4} \, \text{rad/s}^2
    • For the larger wheel: Initial angular velocity (ω0\omega_0) = 8π8\pi rad/s, final velocity = 0 rad/s, time = 8 s. αlarge=8π8=πrad/s2\alpha_{\text{large}} = \frac{8\pi}{8} = \pi \, \text{rad/s}^2
  3. Determine when the angular velocities are equal: Let tt be the time when both angular velocities are the same.

    • Angular velocity of the smaller wheel at time tt: ωsmall=4ππ4×t\omega_{\text{small}} = 4\pi - \frac{\pi}{4} \times t.
    • Angular velocity of the larger wheel at time tt: ωlarge=8ππ×t\omega_{\text{large}} = 8\pi - \pi \times t.

    Set the angular velocities equal: 4ππ4t=8ππt4\pi - \frac{\pi}{4}t = 8\pi - \pi t Solve for tt to find the time when both velocities match.

  4. Calculate the rotations completed by each wheel up to that time

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Angular Velocity
Uniform Deceleration
Rotational Motion

Formulas

Angular velocity conversion from rpm to rad/s: ω = (rpm * 2π) / 60
Angular deceleration formula: α = (ω0 - ω) / t
Rotational kinematics for uniformly decelerated motion: θ = ω0 * t - (1/2) * α * t^2

Theorems

-

Suitable Grade Level

Undergraduate Physics or Advanced High School Physics