Math Problem Statement

To calculate the surface area of each function: (using f(x) as an example)

8.91151 f √1 + f (x) 2

SA π (x) dx 1 = 2 ∫ 0.38085

8.91151 2 0 + 1 √1 + ( (0.00430x .02196x .36528)) dxdy 2 0 + 1 2

SA π (0.00430x .02196x .36528) dx 1 = 2 ∫ 0.38085 = 74.11264 ≈ 74.1cm2

apply this to my polynomial function and for the surface area of a sphere. ∫ f(x) dx = −0.0111573898143 x12 + 0.1703013752625x11 −1.0531878972711x10 +3.1478135332496x9 − 3.0298776084592x8 − 9.6898781492810x7 + 40.2040231489677x6 − 68.9937226700263x5 +67.439770070160x4 − 39.0477196233909x3 +13.2768195135906x2 + 0.6362182975726x + C

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Integral Calculus
Surface Area Calculation
Polynomial Functions
Sphere Surface Area

Formulas

Surface area of revolution formula: $SA = 2\pi \int_a^b f(x) \sqrt{1 + \left( \frac{df}{dx} \right)^2} dx$
Sphere surface area formula: $SA = 4\pi r^2$

Theorems

-

Suitable Grade Level

Advanced Mathematics