Math Problem Statement
To calculate the surface area of each function: (using f(x) as an example)
8.91151 f √1 + f (x) 2
SA π (x) dx 1 = 2 ∫ 0.38085
8.91151 2 0 + 1 √1 + ( (0.00430x .02196x .36528)) dxdy 2 0 + 1 2
SA π (0.00430x .02196x .36528) dx 1 = 2 ∫ 0.38085 = 74.11264 ≈ 74.1cm2
apply this to my polynomial function and for the surface area of a sphere. ∫ f(x) dx = −0.0111573898143 x12 + 0.1703013752625x11 −1.0531878972711x10 +3.1478135332496x9 − 3.0298776084592x8 − 9.6898781492810x7 + 40.2040231489677x6 − 68.9937226700263x5 +67.439770070160x4 − 39.0477196233909x3 +13.2768195135906x2 + 0.6362182975726x + C
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Integral Calculus
Surface Area Calculation
Polynomial Functions
Sphere Surface Area
Formulas
Surface area of revolution formula: $SA = 2\pi \int_a^b f(x) \sqrt{1 + \left( \frac{df}{dx} \right)^2} dx$
Sphere surface area formula: $SA = 4\pi r^2$
Theorems
-
Suitable Grade Level
Advanced Mathematics
Related Recommendation
Surface of Revolution: Proving the Surface Area of a Torus and General Surfaces
Simplify and Evaluate Surface Area Integral: Step-by-Step Guide
Surface Area of Revolution: Rotating Parametric Curve x = e^t - t, y = 4e^{t/2}
Calculate Surface Integral for Spherical Shell and Cone
Solve 3D Shape Problems: Surface Area, Volume Formulas Explained