Math Problem Statement
Find the area of the surface. the surface with parametric equations x = u^2, y = uv, z = 1/2 v^2, 0 ≤ u ≤ 4, 0 ≤ v ≤ 3
Solution
The surface area of a parametric surface is calculated using the formula:
where and are the partial derivatives of the position vector with respect to and , respectively, and is the domain of the parameters and .
Parametric Equations
Step 1: Compute Partial Derivatives
-
Partial derivative with respect to :
-
Partial derivative with respect to :
Step 2: Compute the Cross Product
\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2u & v & 0 \\ 0 & u & v \end{vmatrix} = \mathbf{i} \begin{vmatrix} v & 0 \\ u & v \end{vmatrix} - \mathbf{j} \begin{vmatrix} 2u & 0 \\ 0 & v \end{vmatrix} + \mathbf{k} \begin{vmatrix} 2u & v \\ 0 & u \end{vmatrix}$$ Simplify each determinant: 1. For $$\mathbf{i}$$: $$\begin{vmatrix} v & 0 \\ u & v \end{vmatrix} = v \cdot v - 0 \cdot u = v^2$$ 2. For $$\mathbf{j}$$: $$\begin{vmatrix} 2u & 0 \\ 0 & v \end{vmatrix} = 2u \cdot v - 0 \cdot 0 = 2uv$$ 3. For $$\mathbf{k}$$: $$\begin{vmatrix} 2u & v \\ 0 & u \end{vmatrix} = 2u \cdot u - 0 \cdot v = 2u^2$$ Thus: $$\mathbf{r}_u \times \mathbf{r}_v = \langle v^2, -2uv, 2u^2 \rangle$$ ### Step 3: Compute the Magnitude $$\|\mathbf{r}_u \times \mathbf{r}_v\| = \sqrt{(v^2)^2 + (-2uv)^2 + (2u^2)^2}$$ $$= \sqrt{v^4 + 4u^2v^2 + 4u^4}$$ Factorize: $$\|\mathbf{r}_u \times \mathbf{r}_v\| = \sqrt{(v^2 + 2u^2)^2} = v^2 + 2u^2$$ ### Step 4: Set Up the Integral $$A = \int_0^3 \int_0^4 (v^2 + 2u^2) \, du \, dv$$ ### Step 5: Compute the Integral 1. Inner integral with respect to $$u$$: $$\int_0^4 (v^2 + 2u^2) \, du = \int_0^4 v^2 \, du + \int_0^4 2u^2 \, du$$ $$= v^2 \int_0^4 1 \, du + 2 \int_0^4 u^2 \, du$$ \[ = v^2 [u]_0^4 + 2 \left[\frac{u^3}{3}\right]_0^4 \] $$= v^2 (4 - 0) + 2 \cdot \frac{4^3}{3}$$ $$= 4v^2 + \frac{128}{3}$$ 2. Outer integral with respect to $$v$$: $$A = \int_0^3 \left(4v^2 + \frac{128}{3}\right) \, dv$$ $$= \int_0^3 4v^2 \, dv + \int_0^3 \frac{128}{3} \, dv$$ $$= 4 \int_0^3 v^2 \, dv + \frac{128}{3} \int_0^3 1 \, dv$$ \[ = 4 \left[\frac{v^3}{3}\right]_0^3 + \frac{128}{3} [v]_0^3 \] $$= 4 \cdot \frac{3^3}{3} + \frac{128}{3} \cdot 3$$ $$= 4 \cdot 9 + 128$$ $$= 36 + 128 = 164$$ ### Final Answer: The area of the surface is: $$\boxed{164 \text{ square units}}$$ Would you like to discuss any step in more detail? ### Related Questions: 1. What is the formula for the area of parametric surfaces in general? 2. How do you calculate cross products in vector calculus? 3. How does factorization simplify the magnitude calculation? 4. What are other methods to calculate surface area besides parametric representation? 5. How can this process be applied to cylindrical or spherical coordinates? ### Tip: Always verify your parameter domain boundaries carefully to avoid integration errors.Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Calculus
Parametric Surfaces
Surface Area Calculation
Integration
Formulas
Surface Area Formula: A = ∫∫_D ||r_u × r_v|| dA
Cross Product Determinants
Definite Integral Evaluation
Theorems
Surface Area of Parametric Surfaces
Properties of Cross Products
Integration Theorems in Multivariable Calculus
Suitable Grade Level
Undergraduate Calculus (Calculus III)
Related Recommendation
Surface Area of Parameterized Surface r(u, v) = 3u i - v j + v k
Find the Surface Area of z = 4x^2 over Specified Bounds Using Integration
Surface Integral of Plane x/4−y/2+z/2=1, Using Parametrization and Cross Product
Surface Integral of 4z Over a Plane Above a Square Region
Surface Area of a Parametric Surface x=rcostheta, y=2rcostheta, z=theta