Math Problem Statement

Find the area of the surface. the surface with parametric equations x = u^2, y = uv, z = 1/2 v^2, 0 ≤ u ≤ 4, 0 ≤ v ≤ 3

Solution

The surface area of a parametric surface is calculated using the formula:

A=Dru×rvdA,A = \int\int_D \|\mathbf{r}_u \times \mathbf{r}_v\| \, dA, where ru\mathbf{r}_u and rv\mathbf{r}_v are the partial derivatives of the position vector r(u,v)\mathbf{r}(u, v) with respect to uu and vv, respectively, and DD is the domain of the parameters uu and vv.

Parametric Equations

r(u,v)=u2,uv,12v2\mathbf{r}(u, v) = \langle u^2, uv, \frac{1}{2}v^2 \rangle

Step 1: Compute Partial Derivatives

  1. Partial derivative with respect to uu: ru=uu2,uv,12v2=2u,v,0\mathbf{r}_u = \frac{\partial}{\partial u} \langle u^2, uv, \frac{1}{2}v^2 \rangle = \langle 2u, v, 0 \rangle

  2. Partial derivative with respect to vv: rv=vu2,uv,12v2=0,u,v\mathbf{r}_v = \frac{\partial}{\partial v} \langle u^2, uv, \frac{1}{2}v^2 \rangle = \langle 0, u, v \rangle

Step 2: Compute the Cross Product ru×rv\mathbf{r}_u \times \mathbf{r}_v

\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2u & v & 0 \\ 0 & u & v \end{vmatrix} = \mathbf{i} \begin{vmatrix} v & 0 \\ u & v \end{vmatrix} - \mathbf{j} \begin{vmatrix} 2u & 0 \\ 0 & v \end{vmatrix} + \mathbf{k} \begin{vmatrix} 2u & v \\ 0 & u \end{vmatrix}$$ Simplify each determinant: 1. For $$\mathbf{i}$$: $$\begin{vmatrix} v & 0 \\ u & v \end{vmatrix} = v \cdot v - 0 \cdot u = v^2$$ 2. For $$\mathbf{j}$$: $$\begin{vmatrix} 2u & 0 \\ 0 & v \end{vmatrix} = 2u \cdot v - 0 \cdot 0 = 2uv$$ 3. For $$\mathbf{k}$$: $$\begin{vmatrix} 2u & v \\ 0 & u \end{vmatrix} = 2u \cdot u - 0 \cdot v = 2u^2$$ Thus: $$\mathbf{r}_u \times \mathbf{r}_v = \langle v^2, -2uv, 2u^2 \rangle$$ ### Step 3: Compute the Magnitude $$\|\mathbf{r}_u \times \mathbf{r}_v\| = \sqrt{(v^2)^2 + (-2uv)^2 + (2u^2)^2}$$ $$= \sqrt{v^4 + 4u^2v^2 + 4u^4}$$ Factorize: $$\|\mathbf{r}_u \times \mathbf{r}_v\| = \sqrt{(v^2 + 2u^2)^2} = v^2 + 2u^2$$ ### Step 4: Set Up the Integral $$A = \int_0^3 \int_0^4 (v^2 + 2u^2) \, du \, dv$$ ### Step 5: Compute the Integral 1. Inner integral with respect to $$u$$: $$\int_0^4 (v^2 + 2u^2) \, du = \int_0^4 v^2 \, du + \int_0^4 2u^2 \, du$$ $$= v^2 \int_0^4 1 \, du + 2 \int_0^4 u^2 \, du$$ \[ = v^2 [u]_0^4 + 2 \left[\frac{u^3}{3}\right]_0^4 \] $$= v^2 (4 - 0) + 2 \cdot \frac{4^3}{3}$$ $$= 4v^2 + \frac{128}{3}$$ 2. Outer integral with respect to $$v$$: $$A = \int_0^3 \left(4v^2 + \frac{128}{3}\right) \, dv$$ $$= \int_0^3 4v^2 \, dv + \int_0^3 \frac{128}{3} \, dv$$ $$= 4 \int_0^3 v^2 \, dv + \frac{128}{3} \int_0^3 1 \, dv$$ \[ = 4 \left[\frac{v^3}{3}\right]_0^3 + \frac{128}{3} [v]_0^3 \] $$= 4 \cdot \frac{3^3}{3} + \frac{128}{3} \cdot 3$$ $$= 4 \cdot 9 + 128$$ $$= 36 + 128 = 164$$ ### Final Answer: The area of the surface is: $$\boxed{164 \text{ square units}}$$ Would you like to discuss any step in more detail? ### Related Questions: 1. What is the formula for the area of parametric surfaces in general? 2. How do you calculate cross products in vector calculus? 3. How does factorization simplify the magnitude calculation? 4. What are other methods to calculate surface area besides parametric representation? 5. How can this process be applied to cylindrical or spherical coordinates? ### Tip: Always verify your parameter domain boundaries carefully to avoid integration errors.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Parametric Surfaces
Surface Area Calculation
Integration

Formulas

Surface Area Formula: A = ∫∫_D ||r_u × r_v|| dA
Cross Product Determinants
Definite Integral Evaluation

Theorems

Surface Area of Parametric Surfaces
Properties of Cross Products
Integration Theorems in Multivariable Calculus

Suitable Grade Level

Undergraduate Calculus (Calculus III)