Math Problem Statement

Find the standard​ deviation, s, of sample data summarized in the frequency distribution table below by using the formula​ below, where x represents the class​ midpoint, f represents the class​ frequency, and n represents the total number of sample values.​ Also, compare the computed standard deviation to the standard deviation obtained from the original list of data​ values, 11.1. sequalsStartRoot StartFraction n left bracket Summation from nothing to nothing left parenthesis f times x squared right parenthesis right bracket minus left bracket Summation from nothing to nothing left parenthesis f times x right parenthesis right bracket squared Over n left parenthesis n minus 1 right parenthesis EndFraction EndRoot Interval 20​-26 27​-33 34​-40 41​-47 48​-54 55​-61 62​-68

Frequency 2 3 5 1 15 34 33

Solution

To find the sample standard deviation ss from the frequency distribution using the given formula, we need to follow these steps:

  1. Identify class midpoints: These are the midpoints of each class interval.
  2. Multiply each class midpoint by the corresponding frequency: This gives f×xf \times x.
  3. Multiply each class midpoint squared by the corresponding frequency: This gives f×x2f \times x^2.
  4. Calculate the sum of f×xf \times x and the sum of f×x2f \times x^2.
  5. Compute the total number of sample values nn: This is the sum of the frequencies.
  6. Apply the formula for the standard deviation.

Given formula: s=n(fx2)((fx))2n(n1)s = \sqrt{ \frac{ n \cdot \sum (f \cdot x^2) - (\sum (f \cdot x))^2 }{ n \cdot (n - 1) } }

Let's organize the steps:

Step 1: Class Midpoints

The class midpoints xx are calculated as the average of the lower and upper boundaries of each class interval.

x=lower boundary+upper boundary2x = \frac{\text{lower boundary} + \text{upper boundary}}{2}

So, for each interval:

  • 202620-26: x=20+262=23x = \frac{20 + 26}{2} = 23
  • 273327-33: x=27+332=30x = \frac{27 + 33}{2} = 30
  • 344034-40: x=34+402=37x = \frac{34 + 40}{2} = 37
  • 414741-47: x=41+472=44x = \frac{41 + 47}{2} = 44
  • 485448-54: x=48+542=51x = \frac{48 + 54}{2} = 51
  • 556155-61: x=55+612=58x = \frac{55 + 61}{2} = 58
  • 626862-68: x=62+682=65x = \frac{62 + 68}{2} = 65

Step 2: Frequency Table

IntervalFrequency ffMidpoint xxfxf \cdot xfx2f \cdot x^2
20-26223223=462 \cdot 23 = 462232=10582 \cdot 23^2 = 1058
27-33330330=903 \cdot 30 = 903302=27003 \cdot 30^2 = 2700
34-40537537=1855 \cdot 37 = 1855372=68455 \cdot 37^2 = 6845
41-47144144=441 \cdot 44 = 441442=19361 \cdot 44^2 = 1936
48-5415511551=76515 \cdot 51 = 76515512=3901515 \cdot 51^2 = 39015
55-6134583458=197234 \cdot 58 = 197234582=11432834 \cdot 58^2 = 114328
62-6833653365=214533 \cdot 65 = 214533652=13942533 \cdot 65^2 = 139425

Step 3: Summations

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Statistics
Frequency Distribution
Standard Deviation

Formulas

s = sqrt{ (n * Σ(f * x^2) - (Σ(f * x))^2) / (n * (n - 1)) }
Midpoint x = (lower boundary + upper boundary) / 2

Theorems

-

Suitable Grade Level

Grades 10-12