Math Problem Statement

Hasil dari (√3+√2) ²

Solution

Hasil dari (3+2)2(\sqrt{3} + \sqrt{2})^2 dapat dihitung dengan menggunakan rumus kuadrat sempurna, yaitu:

(a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2

Dengan a=3a = \sqrt{3} dan b=2b = \sqrt{2}, maka:

(3+2)2=(3)2+2×3×2+(2)2(\sqrt{3} + \sqrt{2})^2 = (\sqrt{3})^2 + 2 \times \sqrt{3} \times \sqrt{2} + (\sqrt{2})^2

=3+26+2= 3 + 2 \sqrt{6} + 2

=5+26= 5 + 2\sqrt{6}

Jadi, hasil dari (3+2)2(\sqrt{3} + \sqrt{2})^2 adalah:

5+265 + 2\sqrt{6}

Apakah Anda ingin penjelasan lebih lanjut atau ada pertanyaan lain?

Berikut 5 pertanyaan terkait:

  1. Bagaimana cara menghitung nilai numerik dari 262\sqrt{6}?
  2. Apa hasil dari (32)2(\sqrt{3} - \sqrt{2})^2?
  3. Bagaimana cara menyederhanakan ekspresi (a+b)2(\sqrt{a} + \sqrt{b})^2 secara umum?
  4. Bagaimana cara menghitung (3+5)2(\sqrt{3} + \sqrt{5})^2?
  5. Apa yang dimaksud dengan sifat distributif dalam matematika?

Tip: Saat mengkuadratkan bilangan berbentuk (a+b)2(a+b)^2, ingat bahwa hasilnya selalu berupa penjumlahan dari a2a^2, b2b^2, dan dua kali hasil perkalian aa dan bb.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Square of Binomials
Radicals

Formulas

(a + b)^2 = a^2 + 2ab + b^2

Theorems

Perfect Square Theorem

Suitable Grade Level

Grades 8-10